Skip to main content
Log in

Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In this review I will describe the development of a technique that enables genotyping of individual DNA molecules in the context of morphologically preserved fixed cells, from the fundamental concept published in 1994 to the present status. The review describes enzyme-assisted histochemistry approaches to achieve highly specific molecular identification reactions coupled to efficient signal amplification. The primary molecular identification is accomplished through circularization of oligonucleotide probes, called padlock probes. The circularization reaction is catalyzed by a DNA ligase, which provides robust distinction between single-nucleotide variants under standard reaction conditions. To generate a detectable signal from individual circularized probe molecules, a DNA polymerase is added that replicates probe circles, generating a long tandem-repeated DNA product, easily visualized using a standard epi-fluorescence microscope. Individual signals are recorded as bright dots, providing digital information about the abundance of specific sequences and opportunities for simultaneous detection of several targets using spectral multiplexing. The importance of strictly target-dependent signal amplification will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antson D-O, Isaksson A, Landegren U, Nilsson M (2000) PCR-generated padlock probes detect single nucleotide variation in genomic DNA. Nucleic Acids Res 28:e58

    Article  PubMed  CAS  Google Scholar 

  • Antson D-O, Mendel-Hartvig M, Landegren U, Nilsson M (2003) PCR-generated padlock probes distinguish homologous chromosomes through quantitative fluorescence analysis. Eur J Hum Genet 11:357–363

    Article  PubMed  CAS  Google Scholar 

  • Banér J, Nilsson M, Mendel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26:5073–5078

    Article  PubMed  Google Scholar 

  • Banér J, Isaksson A, Waldenström E, Jarvius J, Landegren U, Nilsson M (2003) Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucleic Acids Res 31:e103

    Article  PubMed  Google Scholar 

  • Blab GA, Schmidt T, Nilsson M (2004) Sensitive and homogenous detection of single rolling-circle replication products. Anal Chem 76:495–498

    Article  PubMed  CAS  Google Scholar 

  • Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phi29 DNA polymerase. J Biol Chem 264:8935–8940

    PubMed  CAS  Google Scholar 

  • Brink AA, Wiegant JC, Szuhai K, Tanke HJ, Kenter GG, Fleuren GJ, Schuuring E, Raap AK (2002) Simultaneous mapping of human papillomavirus integration sites and molecular karyotyping in short-term cultures of cervical carcinomas by using 49-color combined binary ratio labeling fluorescence in situ hybridization. Cancer Genet Cytogenet 134:145–150

    Article  PubMed  CAS  Google Scholar 

  • Christian AT, Pattee MS, Attix CM, Reed BE, Sorensen KJ, Tucker JD (2001) Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells. Proc Natl Acad Sci USA 98:14238–14243

    Article  PubMed  CAS  Google Scholar 

  • Dahl F, Baner J, Gullberg M, Mendel-Hartvig M, Landegren U, Nilsson M (2004) Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci USA 101:4548–4553

    Article  PubMed  CAS  Google Scholar 

  • van Dekken H, Pinkel D, Mullikin J, Gray JW (1988) Enzymatic production of single-stranded DNA as a target for fluorescence in situ hybridization. Chromosoma 97:1–5

    Article  PubMed  Google Scholar 

  • Fire A, Xu S-Q (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci USA 92:4641–4645

    Article  PubMed  CAS  Google Scholar 

  • Goto Y, Nonaka I, Horai S (1990) A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348:651–653

    Article  PubMed  CAS  Google Scholar 

  • Hardenbol P, Baner J, Jain M, Nilsson M, Namsaraev EA, Karlin-Neumann GA, Fakhrai-Rad H, Ronaghi M, Willis TD, Landegren U, Davis RW (2003) Multiplexed genotyping with sequence-tagged molecular inversion probes. Nat Biotechnol 21:673–678

    Article  PubMed  CAS  Google Scholar 

  • Hardenbol P, Yu F, Belmont J, Mackenzie J, Bruckner C, Brundage T, Boudreau A, Chow S, Eberle J, Erbilgin A et al (2005) Highly multiplexed molecular inversion probe genotyping: over 10,000 targeted SNPs genotyped in a single tube assay. Genome Res 15:269–275

    Article  PubMed  CAS  Google Scholar 

  • Landegren U, Kaiser R, Sanders J, Hood L (1988) A ligase-mediated gene detection technique. Science 241:1077–1080

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Koch J, Nygren A, Janssen G, Raap AK, Landegren U, Nilsson M (2004) In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes. Nat Methods 1:227–232

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Daubendiek SL, Zillman MA, Ryan K, Kool ET (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J Am Chem Soc 118:1587–1594

    Article  CAS  Google Scholar 

  • Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19:225–232

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Krejci K, Koch J, Kwiatkowski M, Gustavsson P, Landegren U (1997) Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet 16:252–255

    Article  PubMed  CAS  Google Scholar 

  • Nilsson M, Dahl F, Larsson C, Gullberg M, Stenberg J (2006) Analyzing genes using closing and replicating circles. Trends Biotechnol 24:83–88

    Article  PubMed  CAS  Google Scholar 

  • van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, van de Kamp JJ, Maassen JA (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1:368–371

    Article  PubMed  Google Scholar 

  • Salas M (2004) Ø29 DNA polymerase, a potent amplification enzyme. In: Demidov VV, Broude NE (eds) DNA amplification: current technologies and applications. Horizon Bioscience, Wymondham, pp 21–34

    Google Scholar 

  • Shaposhnikov S, Larsson C, Henriksson S, Collins A, Nilsson M (2006) Detection of Alu sequences and mtDNA in comets using padlock probes. Mutagenesis (in press)

  • Tanke HJ, Wiegant J, Gijlswijk RPMv, Bezrookove V, Pattenier H, Heetebrij RJ, Talman EG, Raap AK, Vrolijk J (1999) New strategy for multi-color fluorescence in situ hybridisation: COBRA: COmbined Binary RAtio labelling. Eur J Hum Genet 7:2–11

    Article  PubMed  CAS  Google Scholar 

  • de Vega M, Lazaro JM, Salas M, Blanco L (1998) Mutational analysis of phi29 DNA polymerase residues acting as ssDNA ligands for 3′–5′ exonucleolysis. J Mol Biol 279:807–822

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The results I have described have been achieved through the work of many collaborators and co-workers. I would particularly like to emphasize the contributions of Ulf Landegren, Jörn Koch and Ton Raap, as well as the former and present students Johan Banér, Dan-Oscar Antson, Chatarina Larsson and Sara Henriksson. I further thank Landegren and Raap for valuable comments about the manuscript. My work has been supported by grants from the Biejer, Linné and Wallenberg foundations, from the Swedish Research Council, the EU FP6 integrated project MolTools and by a long-term EMBO fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats Nilsson.

Additional information

Robert Feulgen Prize 2006 Winner lecture presented at the 48th Symposium of the Society for Histochemistry in Stresa, Lake Maggiore, Italy, 7–10 September 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, M. Lock and roll: single-molecule genotyping in situ using padlock probes and rolling-circle amplification. Histochem Cell Biol 126, 159–164 (2006). https://doi.org/10.1007/s00418-006-0213-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-006-0213-2

Keywords

Navigation