Skip to main content
Log in

Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The inhibition of pancreatic α-amylase and the prevention of pancreatic oxidative damage are considered possible strategies for the management of type 2 diabetes. The aim of our study was to evaluate in vitro the antioxidant properties and α-amylase inhibition of ten brown and red macroalgal species from the Persian Gulf. The α-amylase inhibition was tested using the chromogenic dinitrosalicylic acid (DNS) method, and the antioxidant properties were evaluated using the ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) radical scavenging and ferric reducing antioxidant power (FRAP) methods. The results of our study showed that all analyzed macroalgal species revealed antioxidant effects and α-amylase inhibitory activities. Among the studied species, the highest α-amylase inhibition was shown by the brown algae Sirophysalis trinodis (IC50 0.42 mg mL−1, 32–97% inhibition), Polycladia myrica (IC50 = 0.72 mg mL−1, 32–97% inhibition), and the red alga Palisada perforata (IC50 = 1.1 mg mL−1, 27–91%). Sirophysalis trinodis (125.4 μg ASA mg−1) and Sargassum angustifolium (IC50 = 0.40 mg mL−1) had the highest FRAP-reducing power and ABTS radical scavenging activities, respectively. In addition to the species, α-amylase inhibition and the antioxidant effects depended on the type of solvent used for algal extraction; the best properties were generally presented by methanol and ethyl acetate. In conclusion, the enzyme inhibition and antioxidant activities of S. trinodis, P. myrica, P. perforata, and S. angustifolium suggest that they may have potential for antidiabetic and antioxidant use and could therefore be studied further for potential pharmaceutical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amin KA, Nagy MA (2009) Effect of carnitine and herbal mixture extract on obesity induced by high fat diet in rats. Diabet Metabol Syndr 16:1–17

    Google Scholar 

  • Anggadiredja J, Andyani R, Hayati M (1997) Antioxidant activity of Sargassum polycystum (Phaeophyta) and Laurencia obtusa (Rhodophyta) from Seribu Islands. J Appl Phycol 9:477–479

    Article  CAS  Google Scholar 

  • Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total anti-oxidant activity. Food Chem 73:239–244

    Article  CAS  Google Scholar 

  • Athukorala Y, Kim KN, Jeon YJ (2006) Anti proliferative and antioxidant properties of an enzymatic hydro-lysate from brown alga, Ecklonia cava. Food Chem Toxicol 44:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Balasubramaniam V, Lee JC, Noh MFM, Ahmad S, Brownlee IA, Ismail A (2016) Alpha-amylase, antioxidant and anti-inflammatory activities of Eucheuma denticulatum (N.L. Burman) F.S. Collins and Hervey. J Appl Phycol 28:1965

    Article  CAS  Google Scholar 

  • Bayens JW, Thorpe SR (1999) Role of oxidative stress in diabetic complication: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  Google Scholar 

  • Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Coop BR, Munro MH, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:122–144

  • Burton GW, Ingold KU (1999) Mechanisms of antioxidant action: preventive and chain breaking antioxidants. In: Miguel A, Quintanilha AT, Weber H (eds) CRC handbook of free radicals and antioxidants in biomedicine, vol II. CRC Press, Boca Raton, pp 29–43

    Google Scholar 

  • Campbell RK, White JR, Saulie BA (1996) Metformin: a new oral biguanide. Clin Therapeut 18:360–371

    Article  CAS  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo P (2007) Review: metabolites from algae with economical impact. Comp Biochem Physiol 146:60–78

    Article  Google Scholar 

  • Chakraborty S, Bhattacharya T (2012) Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat, India. J Algal Biomass Utln 3:32–38

    Google Scholar 

  • Connan S, Delisle F, Deslandes E, Ar Gall E (2006) Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Bot Mar 49:34–46

    Article  Google Scholar 

  • Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae. Algae 25:155–171

    Article  CAS  Google Scholar 

  • Dang HT, Lee HJ, Yoo ES, Shinde PB, Lee YM, Hong J, Kim D, Jung JH (2008) Anti-inflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J Nat Prod 71:232–240

    Article  CAS  PubMed  Google Scholar 

  • Demirel Z, Yilmaz-Koz FF, Karabay_Yavasoglu NU, Ozdemir G, Sukatar A (2011) Antimicrobial and antioxidant activities of solvent extracts and the essential oil composition of Laurencia obtusa and Laurencia obtusa var. pyramidata. Rom Biotechnol Lett 16:5927–5936

    CAS  Google Scholar 

  • Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon J-M (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem 57:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Ebadi M, Srinivasan SK, Baxi MD (1996) Oxidative stress and antioxidant theory in Parkinson’s disease. Prog Neurobiol 48:1–19

    Article  CAS  PubMed  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–49

    CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Freidovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:1–13

    Article  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40:959–975

    Article  CAS  PubMed  Google Scholar 

  • Gray GM (1975) Carbohydrate digestion and absorption—role of the small intestine. New Engl J Med 292:1225–1230

    Article  CAS  PubMed  Google Scholar 

  • Gülçin I (2012) Antioxidant activity of food constituents: an overview. Arch Toxicol 86:345–391

    Article  PubMed  Google Scholar 

  • Hansawasdi C, Kawabata J, Kasai T (2000) α-amylase inhibition from Roselle (Hibiscus sabdariffa Linn.) tea. Biosci Biochem 64:1041–1043

    Article  CAS  Google Scholar 

  • Heo SJ, Park EJ, Lee KW, Jeon YJ (2005) Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour Technol 96:1613–1623

    Article  CAS  PubMed  Google Scholar 

  • Jan S, Khan MR, Rashid U, Bokhari J (2013) Assessment of antioxidant potential, total phenolics and flavonoids of different solvent fractions of Monotheca buxifolia fruit. Osong Public Health Res Perspect 4:246–254

    Article  PubMed  PubMed Central  Google Scholar 

  • Jassbi AR, Mohabati M, Eslami S, Sohrabipour J, Miri R (2013) Biological activity and chemical constituents of red and brown algae from the Persian Gulf. Iranian J Pharmaceut Res 12(3):339–348

    CAS  Google Scholar 

  • Jenner P, Olnaw CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47(Suppl):S161–S176

    Article  CAS  PubMed  Google Scholar 

  • Kamenarska Z, Serkedjieva J, Najdenski H, Stefanov K, Tsvetkova I, Dimitrova-Konaklieva S, Popov S (2009) Antibacterial, antiviral, and cytotoxic activities of some red and brown seaweeds from the Black Sea. Bot Mar 52:80–86

    Article  CAS  Google Scholar 

  • Karawita R, Siriwardhana N, Lee KW, Heo MS, Yeo IK, Lee YD, Jeon YJ (2005) Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. Eur Food Res Technol 220:363–371

    Article  CAS  Google Scholar 

  • Kelman D, Kromkowski PE, McDermid JK, Tabandera KN, Wright PR, Wright DA (2012) Antioxidant activity of Hawaiian marine algae. Mar Drugs 10:403–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Woo S, Yun H, Yum S, Choi E, Do JR, Jo JH, Kim D, Lee S, Lee TK (2005) Total phenolic contents and biological activities of Korean seaweed extracts. Food Sci Biotech 14:798–802

    CAS  Google Scholar 

  • Kokabi M, Yousefzadi M, Ali Ahmadi A, Feghhi MA, Keshavarz M (2011) Antioxidant activity of extracts of selected algae from the Persian Gulf, Iran. J Persian Gulf (Mar Sci) 4(12):45–50

    Google Scholar 

  • Krentz AJ, Baile CJ (2005) Oral anti-diabetic agents: current role in type 2 diabetes mellitus. Drugs 65:385–411

    Article  CAS  PubMed  Google Scholar 

  • Kwon YI, Apostolidis E, Shetty K (2008) Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of hyperglycemia linked to type 2 diabetes. J Food Biochem 32:15–31

    Article  CAS  Google Scholar 

  • Lee S-H, Jeon Y-J (2013) Review: anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 86:129–136

    Article  CAS  PubMed  Google Scholar 

  • Lee S-H, Athukorala Y, Lee J-S, Jeon Y-J (2008) Simple separation of anticoagulant sulfated galactan from marine red algae. J Appl Phycol 20:1051–1059

    Article  Google Scholar 

  • Lee SH, Li Y, Karadeniz F, Kim MM, Kim SK (2009) α-glucosidase and α-amylase inhibitory activities of phloroglucinol derivatives from edible marine brown alga, Ecklonia cava. J Sci Food Agric 89:1552–1558

    Article  CAS  Google Scholar 

  • Lim SN, Cheung PCK, Ooi VEC, Ang PO (2002) Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50:3862–3866

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9:29–35

    Article  CAS  Google Scholar 

  • Mellor KM, Ritchie RH, Delbridge LM (2010) Reactive oxygen species and insulin-resistant cardiomyopathy. Clin Exp Pharmacol Physiol 37:222–228

    Article  CAS  PubMed  Google Scholar 

  • Mole M, Anjali S (2015) Antibacterial and antioxidant potential of Ulva and Ectocarpus. Indian J Appl Res 5(5):722–725

    Google Scholar 

  • Mori J, Matsunaga T, Takahashi S, Hasegawa C, Saito H (2003) Inhibitory activity on lipid peroxidation of extracts from marine brown alga. Phytother Res 17:549–551

    Article  PubMed  Google Scholar 

  • Movahedinian A, Heydari M (2012) Antioxidant activity and total phenolic content in two alga species from the Persian Gulf in Bushehr Province, Iran. Int J Sci Res 3:954–958

    Google Scholar 

  • Nagarani N, Kumaraguru AK (2013) Evaluation of anti-inflammatory, anti-diabetic, cytotoxic activity of Kappaphycus alvarezii. Int J Pharm Biol Sci 4:495–503

    Google Scholar 

  • Nagy MA, Ewais MM (2014) Anti-diabetic and antioxidative potential of Cystoseira myrica. Am J Biochem 4:59–67

    Google Scholar 

  • Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126:1006–1012

    Article  CAS  Google Scholar 

  • Park PJ, Heo SJ, Park EJ, Kim SK, Byun HG, Jeon BT, Jeon YJ (2005) Reactive oxygen effect of enzymatic extracts from Sargassum thunbergii. J Agric Food Chem 53:6666–6672

    Article  CAS  PubMed  Google Scholar 

  • Pietta P, Simonetti P, Mauri P (1998) Antioxidant activity of selected medicinal plants. J Agric Food Chem 46:4487–4490

    Article  CAS  Google Scholar 

  • Rengasamy KR, Aderogba M, Amoo S, Strike W, Van Staden J (2014) Macrocystis angustifolia is a potential source of enzyme inhibitors linked to type 2 diabetes and dementia. J Appl Phycol 26:1557–1563

    Article  CAS  Google Scholar 

  • Reuser AJ, Wisselaar HA (1994) An evaluation of the potential side-effects of alpha-glucosidase inhibitors used for the management of diabetes mellitus. Eur J Clin Investig 24:19–24

    Article  CAS  Google Scholar 

  • Rhabasa-Lhoret R, Chiasson JL (2004) α-Glucosidase inhibitors. In: Defronzo RA, Ferrannini E, Keen H, Zimmet PUK (eds) International textbook of diabetes mellitus. John Wiley & Sons Ltd., London, pp 901–914

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–158

    Article  Google Scholar 

  • Sadati N, Khanavi M, Mahrokh A, Nabavi SMB, Sohrabipour J, Hadjiakhoondi A (2011) Comparison of antioxidant activity and total phenolic contents of some Persian Gulf marine algae. J Med Plants 10:73–79

    CAS  Google Scholar 

  • Santoso J, Yoshie-Stark Y, Suzuki T (2004) Anti-oxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fish Sci 70:183–188

    Article  CAS  Google Scholar 

  • Senthil SL, Kumar TV, Geetharamani D, Maruthupandi T (2013) Screening of seaweeds collected from southeast coastal area of India for α-amylase inhibitory activity, antioxidant activity and biocompatibility. Int J Pharm Pharmaceut Sci 5(Suppl 1):240–244

    Google Scholar 

  • SenthilKumar P, Sudha S (2012) Evaluation of alpha-amylase and alpha-glucosidase inhibitory properties of selected seaweeds from Gulf of Mannar. Int Res J Pharm 3:128–130

    Google Scholar 

  • Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  CAS  PubMed  Google Scholar 

  • Siriwardhana N, Lee KW, Kim SH, Ha JH, Jeon YJ (2003) Antioxidant activity of Hizikia fusiformis on reactive oxygen species scavenging and lipid peroxidation inhibition. Food Sci Technol Int 9:339–346

    Article  Google Scholar 

  • Sohrabipour J, Rabiei R (1999) A list of marine algae of sea shores of the Persian Gulf and Oman Sea in the Hormozgan province. Iranian J Bot 8:131–162

    Google Scholar 

  • Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608

  • Taskin E, Caki Z, Ozturk M, Taskin E (2010) Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. Afr J Biotechnol 9:4272–4277

    Google Scholar 

  • Tiwari AK (2001) Imbalance in antioxidant defence and human diseases: multiple approach of natural antioxidant therapy. Curr Sci 81:1179–1187

    CAS  Google Scholar 

  • Wei Y, Li Z, Hu Y, Xu Z (2003) Inhibition of mouse liver lipid peroxidation by high molecular weight phlorotannins from Sargassum kjellmanianum. J Appl Phycol 15:507–511

    Article  CAS  Google Scholar 

  • Yan XJ, Nagata T, Fan X (1998) Antioxidative activities in some seaweeds. Plant Foods Hum Nutr 52:253–262

    Article  CAS  PubMed  Google Scholar 

  • Yun-Zhong F, Sheng Y, Wu G (2002) Free radicals antioxidants and nutrition. Nutrition 18:827–879

    Google Scholar 

  • Zubia M, Robledo D, Freile-Pelegrin Y (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan peninsula, Mexico. J Appl Phycol 19:449–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soheila Moein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirian, K., Moein, S., Sohrabipour, J. et al. Antidiabetic and antioxidant activities of brown and red macroalgae from the Persian Gulf. J Appl Phycol 29, 3151–3159 (2017). https://doi.org/10.1007/s10811-017-1152-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1152-0

Keywords

Navigation