Skip to main content
Log in

Quantification of polyphenolic antioxidants and free radical scavengers in marine algae

  • 9th Asia Pacific Conference on Algal Biotechnology - Bangkok
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

While the health benefits of antioxidant compounds from terrestrial plants are widely accepted in Western counties, there is less recognition of the health benefits of marine algal antioxidant compounds. Oceans are an abundant source of biomaterials, with many natural antioxidants derived from marine algae being investigated as potential anti-aging, anti-inflammatory, anti-bacterial, anti-fungal, cytotoxic, anti-malarial, anti-proliferative, and anti-cancer agents. The aim of this work was to quantify and compare polyphenolic content and free radical scavenging activity of algal extracts using normal phase and reverse phase thin layer chromatography. Post-chromatographic derivatization with neutral ferric chloride (FeCl3) solution and with 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radical were used to assess total polyphenolic content and free radical scavenging activities in algal samples. Total phenolic content quantified on normal phase plates was correlated to phenolic content established on reverse phase plates. Similarly, free radical scavenging activity established on normal phase and reverse phase plates were in good agreement. However, although free radical scavenging activities determined on normal phase plates were highly correlated with polyphenolic content, this correlation was low for reverse phase plates. Lipophilic reversed phase TLC plates do not effectively separate mixtures of highly polar compounds like flavonoids, phenolic compounds and their glucosides. Thus, although reversed phase plates are recommended for assessment of free radical scavengers, as they do not influence the free radical-antioxidant reaction, they may not provide the best separation of polar phenolic compounds, especially flavonoids, and therefore may not accurately quantify polyphenolic content and free radical scavenging potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agatonovic-Kustrin S, Babazadeh Ortakand D, Morton DW, Yusof AP (2015a) Rapid evaluation and comparison of natural products and antioxidant activity in calendula, feverfew, and German Camomile extracts. J Chromatogr A 1385:103–110

    Article  CAS  PubMed  Google Scholar 

  • Agatonovic-Kustrin S, Morton D, Yusof A (2015b) Thin-layer chromatography-bioassay as powerful tool for rapid identification of bioactive components in botanical extracts. Mod Chem Appl 3:e120

    Article  Google Scholar 

  • Agatonovic-Kustrin S, Morton DW, Yusof AP (2016) Development and validation of a simple high performance thin layer chromatography method combined with direct 1,1-diphenyl-2-picrylhydrazyl assay to quantify free radical scavenging activity in wine. Food Chem 197(Part A):285–290

    Article  CAS  PubMed  Google Scholar 

  • Auezova L, Najjar F, Selivanova O, Hajj Moussa E, Diab Assaf M (2013) Antioxidant activity of brown alga Saccharina bongardiana from Kamchatka (Pacific coast of Russia). A methodological approach J Appl Phycol 25:1189–1196

    Article  CAS  Google Scholar 

  • Babic O, Kovac D, Raseta M, Sibul F, Svircev Z, Simeunovic J (2016) Evaluation of antioxidant activity and phenolic profile of filamentous terrestrial cyanobacterial strains isolated from forest ecosystem. J Appl Phycol 28:2333–2342

    Article  CAS  Google Scholar 

  • Banerjee S, Haldar BC (1950) Constitution of ferri-phenol complex in solution. Nature 165:1012–1012

    Article  CAS  PubMed  Google Scholar 

  • Bojic M, Haas VS, Saric D, Males Z (2013) Determination of flavonoids, phenolic acids, and xanthines in mate tea (Ilex paraguariensis St.-Hil.). J Anal Meth Chem 2013. doi:10.1155/2013/658596

  • Chan PT, Matanjun P, Yasir SM, Tan TS (2015) Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. J Appl Phycol 27:2377–2386

    Article  CAS  Google Scholar 

  • Cieśla Ł, Kryszeń J, Stochmal A, Oleszek W, Waksmundzka-Hajnos M (2012) Approach to develop a standardized TLC-DPPH test for assessing free radical scavenging properties of selected phenolic compounds. J Pharm Biomed Anal 70:126–135

    Article  PubMed  Google Scholar 

  • Cornish ML, Garbary DJ (2010) Antioxidants from macroalgae: potential applications in human health and nutrition. Algae 25:155–171

    Article  CAS  Google Scholar 

  • Fernando IS, Kim M, Son K-T, Jeong Y, Jeon Y-J (2016) Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J Med Food 19:615–628

    Article  PubMed  Google Scholar 

  • Ganzler K, Salgo A, Valkó K (1986) Microwave extraction: a novel sample preparation method for chromatography. J Chromatogr A 371:299–306

    Article  CAS  Google Scholar 

  • Garcia S, Heinzen H, Martinez R, Moyna P (1993) Identification of flavonoids by TLC scanning analysis. Chromatographia 35:430–434

    Article  CAS  Google Scholar 

  • Grinberg N (1990) Modern thin-layer chromatography, Chromatographic science series, vol 52. Taylor & Francis, New York

  • Harborne JB (1980) Plant phenolics. In: encyclopedia of plant physiology: secondary plant products, vol 8. Springer, Heidelberg

  • Hiermann A (1979) Auftrennung und Remissionsmessung in situ von Flavonoid-Aglykonen auf Hochleistungsdünnschichtchromatographie-Fertigplatten RP-18 F254S. J Chromatogr A 174:478–482

    Article  Google Scholar 

  • Jiménez-Escrig A, Jiménez-Jiménez I, Pulido R, Saura-Calixto F (2001) Antioxidant activity of fresh and processed edible seaweeds. J Sci Food Agric 81:530–534

    Article  Google Scholar 

  • Kähkönen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem 49:4076–4082

  • Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48:412–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kothari V, Gupta A, Naraniwal M (2012) Comparative study of various methods for extraction of antioxidant and antibacterial compounds from plant seeds. J Nat Rem 12:162–173

    CAS  Google Scholar 

  • Lim SN, Cheung PCK, Ooi VEC, Ang PO (2002) Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum siliquastrum. J Agric Food Chem 50:3862–3866

    Article  CAS  PubMed  Google Scholar 

  • Males Z, Medic-Saric M (2001) Optimization of TLC analysis of flavonoids and phenolic acids of Helleborus atrorubens Waldst. et Kit. J Pharm Biomed Anal 24:353–359

    Article  CAS  PubMed  Google Scholar 

  • Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J Appl Phycol 9:29–35

    Article  CAS  Google Scholar 

  • Poole C (2015) Instrumental thin-layer chromatography, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Ragan MA, Glombitza K (1986) Phlorotannins, brown algal polyphenols. In: Round FE, Chapman DJ (eds) Progress in phycological research. Biopress, Bristol, pp 129–241

    Google Scholar 

  • Rengasamy KRR, Amoo SO, Aremu AO, Stirk WA, Gruz J, Subrtova M, Dolezal K, Van Staden J (2015) Phenolic profiles, antioxidant capacity, and acetylcholinesterase inhibitory activity of eight South African seaweeds. J Appl Phycol 27:1599–1605

    Article  CAS  Google Scholar 

  • Rubinson KA (1986) Chemical analysis. Little, Brown and Company, Boston

    Google Scholar 

  • Sethi A (2006) Systematic lab experiments in organic chemistry. New Age International (P) Limited, Publishers, New Dehli

    Google Scholar 

  • Sukenik A, Zmora O, Carmeli Y (1993) Biochemical quality of marine unicellular algae with special emphasis lipid composition: II. Nannochloropsis sp. Aquaculture 117:313–326

  • Takamatsu S, Hodges TW, Rajbhandari I, Gerwick WH, Hamann MT, Nagle DG (2003) Marine natural products as novel antioxidant prototypes. J Nat Prod 66:605–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas NV, Kim SK (2011) Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ Toxicol Pharmacol 32:325–335

    Article  CAS  PubMed  Google Scholar 

  • Urquiaga I, Leighton F (2000) Plant polyphenol antioxidants and oxidative stress. Biol Res 33:55–64

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhang J-S, Yang B, Lv G-P, Li S-P (2010) Free radical scavenging activity and characterization of sesquiterpenoids in four species of Curcuma using a TLC bioautography assay and GC-MS analysis. Molecules 15:7547–7557

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snezana Agatonovic-Kustrin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agatonovic-Kustrin, S., Morton, D.W. Quantification of polyphenolic antioxidants and free radical scavengers in marine algae. J Appl Phycol 30, 113–120 (2018). https://doi.org/10.1007/s10811-017-1139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1139-x

Keywords

Navigation