Skip to main content
Log in

A method for genetic transformation of Botryococcus braunii using a cellulase pretreatment

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Botryococcus braunii race A is a green microalga that produces alkadienes and alkatrienes, fatty acids, and other compounds with commercial applications. A simple, effective, and reliable genetic transformation method for B. braunii would accelerate the development of a large-scale production method. We propose here a transformation method based on the treatment of B. braunii with a cellulolytic enzyme that transiently weakens its cell wall, facilitating its ability to incorporate foreign DNA. To test the method’s effectiveness, B. braunii cells were treated with cellulase. Weakening of the cell wall was confirmed using confocal and epifluorescence microscopy. Treated cells were transformed with plasmid pSI103, which contains the selective marker AphVIII, a gene that confers resistance to the antibiotic paromomycin (Par). Transformants were obtained on a selection medium containing Par, with a transformation efficiency of 80 transformants μg−1 of plasmid DNA. A PCR analysis showed the presence of the Par gene in the resistant transformants and its maintenance through the sixth generation, after 6 months with antibiotic selection. The availability of an efficient and simple transformation method for B. braunii will make its use more feasible in a wide range of biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aaronson S, Berner T, Gold K, Kushner L, Patni NJ, Repak A, Rubin D (1983) Some observations on the green planktonic alga, Botryococcus braunii and its bloom form. J Plankton Res 5:693–700

    Article  Google Scholar 

  • Abd El Baky HH, El-Baroty GS (2013) Healthy benefit of microalgal bioactive substances. J Aquatic Sci 1:11–23

  • Albani JR (2001) Effect of binding of Calcofluor White on the carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) on the structure and dynamics of the protein moiety. A fluorescence study. Carbohydr Res 334:141–151

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279

    Article  CAS  PubMed  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Cha TS, Yee W, Aziz A (2012) Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. World J Microbiol Biotechnol 28:1771–1779

    Article  CAS  PubMed  Google Scholar 

  • Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362

    Article  CAS  PubMed  Google Scholar 

  • Dunahay TG, Jarvis EE, Roessler PG (2008) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012

    Article  Google Scholar 

  • Eroglu E, Melis A (2010) Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresource Technol 101:2359–2366

    Article  CAS  Google Scholar 

  • Fernández E, Schnell R, Ranum LP, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 86:6449–6453

    Article  PubMed  PubMed Central  Google Scholar 

  • Geng DG, Han Y, Wang YQ, Wang P, Zhang LM, Li WB, Sun YR (2004) Construction of a system for the stable expression of foreign genes in Dunaliella salina. Acta Bot Sin 46:342–346

  • Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects. J Ind Microbiol Biotechnol 38:1879–1890

    Article  CAS  PubMed  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervaceae (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RL, Nakamura M (1999) Expression of human growth hormone by the eukaryotic alga, Chlorella. Curr Microbiol 38:35–341

    Google Scholar 

  • Huang Y, Street-Perrott FA, Perrott RA, Metzger P, Eglinton G (1999) Glacial-interglacial environmental changes inferred from molecular and compound-specific δ 13C analyses of sediments from Sacred lake, Mt. Kenya. Geochim Cosmochim 63:1383–1404

    Article  CAS  Google Scholar 

  • Huszar VLM, Reynolds CS (1997) Phytoplankton periodicity and sequences of dominance in an Amazonian flood-plain lake (Lago Batata, Pará, Brasil): responses to gradual environmental change. Hydrobiologia 346:169–181

    Article  Google Scholar 

  • Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Hayes M (ed) Marine bioactive compounds: sources, characterization and applications, Springer, pp 55-98

  • Jarvis EE, Brown LM (1991) Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 19:317–321

    Article  CAS  Google Scholar 

  • Jordan E, Collins M, Terefe J, Ugozzoli L, Rubio T (2008) Optimizing electroporation conditions in primary and other difficult to transfect cells. J Biomol Tech 9:328–334

    Google Scholar 

  • Kim D, Kim YT, Cho JJ, Bae J, Hur S, Hwang I, Choi T (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73

    Article  CAS  PubMed  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • Largeau C, Casadevall E, Berkaloff C, Dhamelincourt P (1980) Site of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochemistry 19:1043–1051

    Article  CAS  Google Scholar 

  • León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  PubMed  Google Scholar 

  • Lerche K, Hallmann A (2009) Stable nuclear transformation of Gonium pectorale. BMC Biotechnol 9:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wang Y, Zhang Y, Chen X, Zhang P, Ma S (2013) Development of a new method for genetic transformation of the green alga Chlorella ellipsoidea. Mol Biotechnol 54:211–219

    Article  CAS  PubMed  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 6:486–496

    Article  Google Scholar 

  • Metzger P, Ragerb MN, Largeau C (2002) Botryolins A and B, two tetramethylsqualene triethers from the green microalga Botryococcus braunii. Phytochemistry 59:839–843

    Article  CAS  PubMed  Google Scholar 

  • Metzger P, Rager MN, Largeau C (2007) Polyacetals based on polymethylsqualene diols, precursors of algaenan in Botryococcus braunii race B. Org Geochem 38:566–581

    Article  CAS  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:8.1–8.24

    Article  Google Scholar 

  • Pouneva I (1997) Evaluation of algal culture viability and physiological state by fluorescent microscopic methods. Bulg J Plant Physiol 23:67–76

    Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz C (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasconi S, Jobard M, Jouve L, Sime-Ngando T (2009) Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites. Appl Environ Microbiol 75:2545–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato M, Murata Y, Mizusawa M, Iwahashi H, Oka S (2004) A simple and rapid dual-fluorescence viability assay for microalgae. Microbiol Cult Coll 20:53–59

    Google Scholar 

  • Shen P, Fan XR, Li GB (2007) Experimental microbiology. Higher Education Press, Beijing

    Google Scholar 

  • Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229

    Article  CAS  PubMed  Google Scholar 

  • Song D, Fu J, Shi D (2008) Explotation of oil-bearing microalgae for biodiesel. J Biotechnol 24:341–348

    CAS  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talebi AF, Tohidfar M, Tabatabaei M, Bagheri A, Mohsenpor M, Mohtashami SK (2013) Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Mol Biol Rep 40:4421–4428

    Article  CAS  PubMed  Google Scholar 

  • Thompson AS, Rhodes JC, Pettman I (1988) Culture collection of algae and protozoa catalogue of strains, 5th edn. Natural Environment Research and Council, England

    Google Scholar 

  • Versteegh GJM, Blokker P (2004) Resistant macromolecules of extant and fossil microalgae. Phycol Res 52:325–339

    Article  CAS  Google Scholar 

  • Vila M (2010) Inhición de la enzima fitoeno desaturasa y acumulación de fitoeno en microalgas: el iRNA como mecanismo de silenciamiento génico. PhD Thesis. Department of Chemistry and Materials Science, University of Huelva, España p 216

  • Volova TG, Kalacheva GS, Zhila NO (2003) Specificity of lipid composition in two Botryococcus strains, the producers of liquid hydrocarbons. Russ J Plant Physiol 50:627–633

    Article  CAS  Google Scholar 

  • Wake LV, Hillen LW (1981) Nature and hydrocarbon content of blooms of the alga Botryococcus braunii occurring in Australian freshwater lakes. Aust J Mar Freshwat Res 32:353–367

    Article  CAS  Google Scholar 

  • Wang C, Wang Y, Su Q, Gao X (2007) Transient expression of GUS gene in a unicellular marine green alga, Chlorella sp. MACC/C95, via electroporation. Biotechnol Bioeng 12:180–183

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carlos Riquelme for his help in the realization of this study. We are also especially grateful to Dr. Rosa León-Bañares of the Universidad de Huelva (Spain), who kindly gave us the pSI103 plasmid and polyclonal antibodies anti-AphVIII. This study was supported, in part, by research grants from Centro de Investigación Científico Tecnológico para la Minería (CICITEM), Project number R10C1004, and the Regional Government of Antofagasta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella Rivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrios, H., Zapata, M. & Rivas, M. A method for genetic transformation of Botryococcus braunii using a cellulase pretreatment. J Appl Phycol 28, 201–208 (2016). https://doi.org/10.1007/s10811-015-0596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0596-3

Keywords

Navigation