Skip to main content
Log in

Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-analysis of fMRI Studies

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Abnormalities in executive function (EF) are clinical markers for autism spectrum disorder (ASD). However, the neural mechanisms underlying abnormal EF in ASD remain unclear. This meta-analysis investigated the construct, abnormalities, and age-related changes of EF in ASD. Thirty-three fMRI studies of inhibition, updating, and switching in individuals with high-functioning ASD were included (n = 1114; age range 7–57 years). The results revealed that the EF construct in ASD could be unitary (i.e., common EF) in children/adolescents, but unitary and diverse (i.e., common EF and inhibition) in adults. Abnormalities in this EF construct were found across development in individuals with ASD in comparison with typically developing individuals. Implications and recommendations are discussed for EF theory and for practice in ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145.

    PubMed  Google Scholar 

  • American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association.

    Google Scholar 

  • Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69, e55–e68.

    PubMed  Google Scholar 

  • Baggetta, P., & Alexander, P. A. (2016). Conceptualization and operationalization of executive function. Mind, Brain, and Education, 10, 10–33.

    Google Scholar 

  • Barkley, R. A. (2012). Executive functions: What they are, how they work, and why they evolved. New York: Guilford Press.

    Google Scholar 

  • Best, J. R., & Miller, P. H. (2010). A developmental perspective on executive function. Child Development, 81, 1641–1660.

    PubMed  PubMed Central  Google Scholar 

  • Bock, O., & Girgenrath, M. (2006). Relationship between sensorimotor adaptation and cognitive functions in younger and older subjects. Experimental Brain Research, 169, 400–406.

    PubMed  Google Scholar 

  • Bonini, L., Rozzi, S., Serventi, F. U., Simone, L., Ferrari, P. F., & Fogassi, L. (2009). Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding. Cerebral Cortex, 20, 1372–1385.

    PubMed  Google Scholar 

  • Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539–546.

    PubMed  Google Scholar 

  • Brázdil, M., Mikl, M., Mareček, R., Krupa, P., & Rektor, I. (2007). Effective connectivity in target stimulus processing: A dynamic causal modeling study of visual oddball task. NeuroImage, 35, 827–835.

    PubMed  Google Scholar 

  • Brydges, C. R., Fox, A. M., Reid, C. L., & Anderson, M. (2014). The differentiation of executive functions in middle and late childhood: A longitudinal latent-variable analysis. Intelligence, 47, 34–43.

    Google Scholar 

  • California Department of Developmental Services. (2019). Fact book: Fiscal year 2017–2018, Sixteenth edition. Retrieved August 30, 2019, from https://www3.dds.ca.gov/FactsStats/docs/DDS_FactBook_2019.pdf

  • Chan, A. S., Han, Y. M., Leung, W. W. M., Leung, C., Wong, V. C., & Cheung, M. C. (2011). Abnormalities in the anterior cingulate cortex associated with attentional and inhibitory control deficits: A neurophysiological study on children with autism spectrum disorders. Research in Autism Spectrum Disorders, 5, 254–266.

    Google Scholar 

  • Chantiluke, K., Barrett, N., Giampietro, V., Santosh, P., Brammer, M., Simmons, A., et al. (2015). Inverse fluoxetine effects on inhibitory brain activation in non-comorbid boys with ADHD and with ASD. Psychopharmacology (Berl), 232, 2071–2082.

    Google Scholar 

  • Chiu, Y. C., & Egner, T. (2015). Inhibition-induced forgetting: When more control leads to less memory. Psychological Science, 26, 27–38.

    PubMed  Google Scholar 

  • Christou, C., Spanoudis, G., Demetriou, A., & Platsidou, M. (Eds.). (2002). The development of mental processing: Efficiency, working memory, and thinking. Boston, MA: Blackwell.

    Google Scholar 

  • Church, J. A., Bunge, S. A., Petersen, S. E., & Schlaggar, B. L. (2017). Preparatory engagement of cognitive control networks increases late in childhood. Cerebral Cortex, 27, 2139–2153.

    PubMed  Google Scholar 

  • Craig, F., Margari, F., Legrottaglie, A. R., Palumbi, R., De Giambattista, C., & Margari, L. (2016). A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivation disorder. Neuropsychiatric Disease and Treatment, 12, 1191–1202.

    PubMed  PubMed Central  Google Scholar 

  • Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A., Goldsmith, H. H., et al. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8, 519–526.

    PubMed  PubMed Central  Google Scholar 

  • Daly, E., Ecker, C., Hallahan, B., Deeley, Q., Craig, M., Murphy, C., et al. (2014). Response inhibition and serotonin in autism: A functional MRI study using acute tryptophan depletion. Brain, 137, 2600–2610.

    PubMed  PubMed Central  Google Scholar 

  • Dawson, G. (2008). Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Development and Psychopathology, 20, 775–803.

    PubMed  Google Scholar 

  • Dawson, E., Gilovich, T., & Regan, D. T. (2002). Motivated reasoning and performance on the Wason selection task. Personality and Social Psychology Bulletin, 28, 1379–1387.

    Google Scholar 

  • De Fossé, L., Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S., Jr., McGrath, L., et al. (2004). Language-association cortex asymmetry in autism and specific language impairment. Annals of Neurology, 56, 757–766.

    PubMed  Google Scholar 

  • De Vries, M., & Geurts, H. (2015). Influence of autism traits and executive functioning on quality of life in children with an autism spectrum disorder. Journal of Autism and Developmental Disorders, 45, 2734–2743.

    PubMed  PubMed Central  Google Scholar 

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168.

    PubMed  Google Scholar 

  • Dinomais, M., Minassian, A. T., Tuilier, T., Delion, M., Wilke, M., N’Guyen, S., et al. (2009). Functional MRI comparison of passive and active movement: Possible inhibitory role of supplementary motor area. NeuroReport, 20, 1351–1355.

    PubMed  Google Scholar 

  • Duan, X., Wei, S., Wang, G., & Shi, J. (2010). The relationship between executive functions and intelligence on 11-to 12-year-old children. Psychological Test and Assessment Modeling, 52, 419–431.

    Google Scholar 

  • Dumontheil, I., Burgess, P. W., & Blakemore, S. J. (2008). Development of rostral prefrontal cortex and cognitive and behavioural disorders. Developmental Medicine and Child Neurology, 50, 168–181.

    PubMed  PubMed Central  Google Scholar 

  • Edgin, J. O., & Pennington, B. F. (2005). Spatial cognition in autism spectrum disorders: Superior, impaired, or just intact? Journal of Autism and Developmental Disorders, 35, 729–745.

    PubMed  Google Scholar 

  • Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926.

    PubMed  PubMed Central  Google Scholar 

  • Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., et al. (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage, 137, 70–85.

    PubMed  Google Scholar 

  • Fatemi, S. H., Halt, A. R., Stary, J. M., Kanodia, R., Schulz, S. C., & Realmuto, G. R. (2002). Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biological Psychiatry, 52, 805–810.

    PubMed  Google Scholar 

  • Fitzgerald, K. D., Zbrozek, C. D., Welsh, R. C., Britton, J. C., Liberzon, I., & Taylor, S. F. (2008). Pilot study of response inhibition and error processing in the posterior medial prefrontal cortex in healthy youth. Journal of Child Psychology and Psychiatry, 49, 986–994.

    PubMed  Google Scholar 

  • Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186–204.

    PubMed  Google Scholar 

  • Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences, 101, 8174–8179.

    Google Scholar 

  • Gooskens, B., Bos, D. J., Mensen, V. T., Shook, D. A., Bruchhage, M. M., Naaijen, J., et al. (2019). No evidence of differences in cognitive control in children with autism spectrum disorder or obsessive-compulsive disorder: An fMRI study. Developmental Cognitive Neuroscience, 36, 100602.

    PubMed  Google Scholar 

  • Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36, 5–25.

    PubMed  Google Scholar 

  • Hazeltine, E., Poldrack, R., & Gabrieli, J. D. (2000). Neural activation during response competition. Journal of Cognitive Neuroscience, 12(Supplement 2), 118–129.

    PubMed  Google Scholar 

  • Herrington, J. D., Riley, M. E., Grupe, D. W., & Schultz, R. T. (2015). Successful face recognition is associated with increased prefrontal cortex activation in autism spectrum disorder. Journal of Autism and Developmental Disorders, 45, 902–910.

    PubMed  PubMed Central  Google Scholar 

  • Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8, 26–32.

    PubMed  Google Scholar 

  • Hodge, S. M., Makris, N., Kennedy, D. N., Caviness, V. S., Howard, J., McGrath, L., et al. (2010). Cerebellum, language, and cognition in autism and specific language impairment. Journal of Autism and Developmental Disorders, 40, 300–316.

    PubMed  PubMed Central  Google Scholar 

  • Houdé, O., Rossi, S., Lubin, A., & Joliot, M. (2010). Mapping numerical processing, reading, and executive functions in the developing brain: An fMRI meta-analysis of 52 studies including 842 children. Developmental Science, 13, 876–885.

    PubMed  Google Scholar 

  • Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in executive function: Developmental trends and a latent variable analysis. Neuropsychologia, 44, 2017–2036.

    PubMed  Google Scholar 

  • Hyder, F., Phelps, E. A., Wiggins, C. J., Labar, K. S., Blamire, A. M., & Shulman, R. G. (1997). “Willed action”: A functional MRI study of the human prefrontal cortex during a sensorimotor task. Proceedings of the National Academy of Sciences, 94, 6989–6994.

    Google Scholar 

  • Ito, T. A., Friedman, N. P., Bartholow, B. D., Correll, J., Loersch, C., Altamirano, L. J., et al. (2015). Toward a comprehensive understanding of executive cognitive function in implicit racial bias. Journal of Personality and Social Psychology, 108, 187–218.

    PubMed  PubMed Central  Google Scholar 

  • Ishii-Takahashi, A., Takizawa, R., Nishimura, Y., Kawakubo, Y., Kuwabara, H., Matsubayashi, J., et al. (2014). Prefrontal activation during inhibitory control measured by near-infrared spectroscopy for differentiating between autism spectrum disorders and attention deficit hyperactivity disorder in adults. NeuroImage: Clinical, 4, 53–63.

    Google Scholar 

  • Jacob, R., & Parkinson, J. (2015). The potential for school-based interventions that target executive function to improve academic achievement: A review. Review of Educational Research, 85, 512–552.

    Google Scholar 

  • Jarrold, C., & Brock, J. (2004). To match or not to match? Methodological issues in autism-related research. Journal of Autism and Developmental Disorders, 34, 81–86.

    PubMed  Google Scholar 

  • Jung, R. E., & Haier, R. J. (2007). The parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Behavioral and Brain Sciences, 30, 135–154.

    Google Scholar 

  • Kana, R. K., Keller, T. A., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: Decreased activation and underconnectivity in inhibition networks. Biological Psychiatry, 62, 198–206.

    PubMed  Google Scholar 

  • Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144, 1147–1185.

    PubMed  PubMed Central  Google Scholar 

  • Kim, C., Kroger, J. K., & Kim, J. (2011). A functional dissociation of conflict processing within anterior cingulate cortex. Human Brain Mapping, 32, 304–312.

    PubMed  Google Scholar 

  • Knaus, T. A., Silver, A. M., Lindgren, K. A., Hadjikhani, N., & Tager-Flusberg, H. (2008). fMRI activation during a language task in adolescents with ASD. Journal of the International Neuropsychological Society, 14, 967–979.

    PubMed  PubMed Central  Google Scholar 

  • Koshino, H., Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2007). fMRI investigation of working memory for faces in autism: Visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18, 289–300.

    PubMed  Google Scholar 

  • Lancaster, J. L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28, 1194–1205.

    PubMed  PubMed Central  Google Scholar 

  • Langen, M., Leemans, A., Johnston, P., Ecker, C., Daly, E., Murphy, C. M., et al. (2012). Fronto-striatal circuitry and inhibitory control in autism: Findings from diffusion tensor imaging tractography. Cortex, 48, 183–193.

    PubMed  Google Scholar 

  • Lawson, R. A., Papadakis, A. A., Higginson, C. I., Barnett, J. E., Wills, M. C., Strang, J. F., et al. (2015). Everyday executive function impairments predict comorbid psychopathology in autism spectrum and attention deficit hyperactivation disorders. Neuropsychology, 29, 445–453.

    PubMed  Google Scholar 

  • Lee, K., Bull, R., & Ho, R. M. (2013). Developmental changes in executive functioning. Child Development, 84, 1933–1953.

    PubMed  Google Scholar 

  • Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 59–80.

    Google Scholar 

  • Lerner, M. D., & Lonigan, C. J. (2014). Executive function among preschool children: Unitary versus distinct abilities. Journal of Psychopathology and Behavioral Assessment, 36, 626–639.

    PubMed  PubMed Central  Google Scholar 

  • Lever, A. G., Werkle-Bergner, M., Brandmaier, A. M., Ridderinkhof, K. R., & Geurts, H. M. (2015). Atypical working memory decline across the adult lifespan in autism spectrum disorder? Journal of Abnormal Psychology, 124, 1014–1026.

    PubMed  Google Scholar 

  • Liss, M., Fein, D., Allen, D., Dunn, M., Feinstein, C., Morris, R., et al. (2001). Executive functioning in high-functioning children with autism. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 261–270.

    Google Scholar 

  • Loukusa, S., Mäkinen, L., Kuusikko-Gauffin, S., Ebeling, H., & Moilanen, I. (2014). Theory of mind and emotion recognition skills in children with specific language impairment, autism spectrum disorder and typical development: Group differences and connection to knowledge of grammatical morphology, word-finding abilities and verbal working memory. International Journal of Language & Communication Disorders, 49, 498–507.

    Google Scholar 

  • Luna, B., Doll, S. K., Hegedus, S. J., Minshew, N. J., & Sweeney, J. A. (2007). Maturation of executive function in autism. Biological Psychiatry, 61, 474–481.

    PubMed  Google Scholar 

  • Luna, B., Minshew, N. J., Garver, K. E., Lazar, N. A., Thulborn, K. R., Eddy, W. F., et al. (2002). Neocortical system abnormalities in autism: An fMRI study of spatial working memory. Neurology, 59, 834–840.

    PubMed  Google Scholar 

  • Lynch, C. J., Breeden, A. L., You, X., Ludlum, R., Gaillard, W. D., Kenworthy, L., et al. (2017). Executive dysfunction in autism spectrum disorder is associated with a failure to modulate frontoparietal-insular hub architecture. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2, 537–545.

    Google Scholar 

  • Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24, 16–31.

    PubMed  PubMed Central  Google Scholar 

  • McAlonan, G. M., Cheung, V., Chua, S. E., Oosterlaan, J., Hung, S.-F., Tang, C.-P., et al. (2009). Age-related grey matter volume correlates of response inhibition and shifting in attention-deficit hyperactivity disorder. The British Journal of Psychiatry, 194, 123–129.

    PubMed  Google Scholar 

  • McKenna, R., Rushe, T., & Woodcock, K. A. (2017). Informing the structure of executive function in children: A meta-analysis of functional neuroimaging data. Frontiers in Human Neuroscience, 11, 154.

    PubMed  PubMed Central  Google Scholar 

  • Merriam, E. P., Genovese, C. R., & Colby, C. L. (2003). Spatial updating in human parietal cortex. Neuron, 39, 361–373.

    PubMed  Google Scholar 

  • Mosconi, M. W., Kay, M., D’Cruz, A. M., Seidenfeld, A., Guter, S., Stanford, L. D., et al. (2009). Impaired inhibitory control is associated with higher-order repetitive behaviors in autism spectrum disorders. Psychological Medicine, 39, 1559–1566.

    PubMed  PubMed Central  Google Scholar 

  • Mosconi, M. W., & Sweeney, J. A. (2015). Sensorimotor dysfunctions as primary features of autism spectrum disorders. Science China Life Sciences, 58, 1016–1023.

    PubMed  PubMed Central  Google Scholar 

  • Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2011). Motor impairments and dyspraxia in autism. In D. G. Amaral, G. Dawson, & D. H. Geschwind (Eds.), Autism spectrum disorders (pp. 355–380). New York: Oxford University Press.

    Google Scholar 

  • Mostert-Kerckhoffs, M. A., Staal, W. G., Houben, R. H., & de Jonge, M. V. (2015). Stop and change: Inhibition and flexibility skills are related to repetitive behavior in children and young adults with autism spectrum disorders. Journal of Autism and Developmental Disorders, 45, 3148–3158.

    PubMed  PubMed Central  Google Scholar 

  • Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36, 27–43.

    PubMed  Google Scholar 

  • Müller, V. I., Cieslik, E. C., Laird, A. R., Fox, P. T., Radua, J., Mataix-Cols, D., et al. (2018). Ten simple rules for neuroimaging meta-analysis. Neuroscience and Biobehavioral Reviews, 84, 151–161.

    PubMed  Google Scholar 

  • Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., et al. (2012). A meta-analysis of executive components of working memory. Cerebral Cortex, 23, 264–282.

    PubMed  PubMed Central  Google Scholar 

  • Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, and Behavioral Neuroscience, 12, 241–268.

    Google Scholar 

  • O’Hearn, K., Asato, M., Ordaz, S., & Luna, B. (2008). Neurodevelopment and executive function in autism. Development and Psychopathology, 20, 1103–1132.

    PubMed  Google Scholar 

  • Ohnishi, T., Matsuda, H., Hashimoto, T., Kunihiro, T., Nishikawa, M., Uema, T., et al. (2000). Abnormal regional cerebral blood flow in childhood autism. Brain, 123, 1838–1844.

    PubMed  Google Scholar 

  • Ozonoff, S., Cook, I., Coon, H., Dawson, G., Joseph, R. M., Klin, A., et al. (2004). Performance on Cambridge Neuropsychological Test Automated Battery subtests sensitive to frontal lobe function in people with autistic disorder: Evidence from the Collaborative Programs of Excellence in Autism network. Journal of Autism and Developmental Disorders, 34, 139–150.

    PubMed  Google Scholar 

  • Paus, T., Zijdenbos, A., Worsley, K., Collins, D. L., Blumenthal, J., Giedd, J. N., et al. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283, 1908–1911.

    PubMed  Google Scholar 

  • Perry, W., Minassian, A., Lopez, B., Maron, L., & Lincoln, A. (2007). Sensorimotor gating deficits in adults with autism. Biological Psychiatry, 61, 482–486.

    PubMed  Google Scholar 

  • Philip, R. C., Dauvermann, M. R., Whalley, H. C., Baynham, K., Lawrie, S. M., & Stanfield, A. C. (2012). A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 36, 901–942.

    PubMed  Google Scholar 

  • Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D. M., Cardoner, N., et al. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27, 605–611.

    PubMed  Google Scholar 

  • Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 1–9.

    PubMed  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    PubMed  Google Scholar 

  • Rødgaard, E.-M., Jensen, K., Vergnes, J.-N., Soulières, I., & Mottron, L. (2019). Temporal changes in effect sizes of studies comparing individuals with and without autism: A meta-analysis. JAMA Psychiatry, 76, 1124–1132.

    PubMed  PubMed Central  Google Scholar 

  • Rosenthal, M., Wallace, G. L., Lawson, R., Wills, M. C., Dixon, E., Yerys, B. E., et al. (2013). Impairments in real-world executive function increase from childhood to adolescence in autism spectrum disorders. Neuropsychology, 27, 13–18.

    PubMed  PubMed Central  Google Scholar 

  • Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern epidemiology. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins.

    Google Scholar 

  • Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., et al. (2012). Modelling neural correlates of working memory: A coordinate-based meta-analysis. NeuroImage, 60, 830–846.

    PubMed  Google Scholar 

  • Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., et al. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27, 973–993.

    PubMed  PubMed Central  Google Scholar 

  • Russo, N., Flanagan, T., Iarocci, G., Berringer, D., Zelazo, P. D., & Burack, J. A. (2007). Deconstructing executive deficits among persons with autism: Implications for cognitive neuroscience. Brain and Cognition, 65, 77–86.

    PubMed  Google Scholar 

  • Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45, 810–823.

    PubMed  Google Scholar 

  • Scheeren, A. M., de Rosnay, M., Koot, H. M., & Begeer, S. (2013). Rethinking theory of mind in high-functioning autism spectrum disorder. Journal of Child Psychology and Psychiatry, 54, 628–635.

    PubMed  Google Scholar 

  • Scherf, K. S., Sweeney, J. A., & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. Journal of Cognitive Neuroscience, 18, 1045–1058.

    PubMed  Google Scholar 

  • Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59, 7–16.

    PubMed  Google Scholar 

  • Senn, T. E., Espy, K. A., & Kaufmann, P. M. (2004). Using path analysis to understand executive function organization in preschool children. Developmental Neuropsychology, 26, 445–464.

    PubMed  Google Scholar 

  • Shafritz, K. M., Bregman, J. D., Ikuta, T., & Szeszko, P. R. (2015). Neural systems mediating decision-making and response inhibition for social and nonsocial stimuli in autism. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 60, 112–120.

    PubMed  Google Scholar 

  • Shafritz, K. M., Dichter, G. S., Baranek, G. T., & Belger, A. (2008). The neural circuitry mediating shifts in behavioral response and cognitive set in autism. Biological Psychiatry, 63, 974–980.

    PubMed  Google Scholar 

  • Sharda, M., Khundrakpam, B. S., Evans, A. C., & Singh, N. C. (2016). Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Structure and Function, 221, 1017–1032.

    PubMed  Google Scholar 

  • Sheridan, P. L., & Hausdorff, J. M. (2007). The role of higher-level cognitive function in gait: Executive dysfunction contributes to fall risk in Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 24, 125–137.

    PubMed  Google Scholar 

  • Smith, A. B., Taylor, E., Brammer, M., & Rubia, K. (2004). Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Human Brain Mapping, 21, 247–256.

    PubMed  PubMed Central  Google Scholar 

  • Smolker, H. R., Depue, B. E., Reineberg, A. E., Orr, J. M., & Banich, M. T. (2015). Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function. Brain Structure and Function, 220, 1291–1306.

    PubMed  Google Scholar 

  • Solomon, M., Yoon, J. H., Ragland, J. D., Niendam, T. A., Lesh, T. A., Fairbrother, W., et al. (2014). The development of the neural substrates of cognitive control in adolescents with autism spectrum disorders. Biological Psychiatry, 76, 412–421.

    PubMed  Google Scholar 

  • St Clair-Thompson, H. L., & Gathercole, S. E. (2006). Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quarterly Journal of Experimental Psychology, 59, 745–759.

    Google Scholar 

  • Tager-Flusberg, H., & Joseph, R. M. (2003). Identifying neurocognitive phenotypes in autism. Philosophical Transactions of the Royal Society of London: Series B Biological Sciences, 358, 303–314.

    Google Scholar 

  • Takarae, Y., Minshew, N. J., Luna, B., & Sweeney, J. A. (2004). Oculomotor abnormalities parallel cerebellar histopathology in autism. Journal of Neurology, Neurosurgery and Psychiatry, 75, 1359–1361.

    PubMed  PubMed Central  Google Scholar 

  • Takarae, Y., Minshew, N. J., Luna, B., & Sweeney, J. A. (2007). Atypical involvement of frontostriatal systems during sensorimotor control in autism. Psychiatry Research: Neuroimaging, 156, 117–127.

    PubMed  Google Scholar 

  • Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage, 16, 765–780.

    PubMed  Google Scholar 

  • van den Bergh, S. F., Scheeren, A. M., Begeer, S., Koot, H. M., & Geurts, H. M. (2014). Age related differences of executive functioning problems in everyday life of children and adolescents in the autism spectrum. Journal of Autism and Developmental Disorders, 44, 1959–1971.

    PubMed  Google Scholar 

  • van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427–449.

    Google Scholar 

  • Vara, A. S., Pang, E. W., Doyle-Thomas, K. A., Vidal, J., Taylor, M. J., & Anagnostou, E. (2014). Is inhibitory control a “no-go” in adolescents with autism spectrum disorder? Molecular Autism, 5, 6.

    PubMed  PubMed Central  Google Scholar 

  • Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25, 343–355.

    PubMed  Google Scholar 

  • Vogan, V. M., Morgan, B. R., Lee, W., Powell, T. L., Smith, M. L., & Taylor, M. J. (2014). The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: Effects of cognitive load. Journal of Neurodevelopmental Disorders, 6, 19.

    PubMed  PubMed Central  Google Scholar 

  • Wallace, G. L., Budgett, J., & Charlton, R. A. (2016). Aging and autism spectrum disorder: Evidence from the broad autism phenotype. Autism Research, 9, 1294–1303.

    PubMed  Google Scholar 

  • Wang, L., Liu, X., Guise, K. G., Knight, R. T., Ghajar, J., & Fan, J. (2010). Effective connectivity of the frontoparietal network during attentional control. Journal of Cognitive Neuroscience, 22, 543–553.

    PubMed  Google Scholar 

  • Wiebe, S. A., Sheffield, T., Nelson, J. M., Clark, C. A., Chevalier, N., & Espy, K. A. (2011). The structure of executive function in 3-year-olds. Journal of Experimental Child Psychology, 108, 436–452.

    PubMed  Google Scholar 

  • Yaple, Z., & Arsalidou, M. (2018). N-back working memory task: Meta-analysis of normative fMRI studies with children. Child Development, 89, 2010–2022.

    PubMed  Google Scholar 

  • Yerys, B. E., Antezana, L., Weinblatt, R., Jankowski, K. F., Strang, J., Vaidya, C. J., et al. (2015). Neural correlates of set-shifting in children with autism. Autism Research, 8, 386–397.

    PubMed  PubMed Central  Google Scholar 

  • Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6, 354–360.

    Google Scholar 

  • Zelazo, P. D., & Müller, U. (2002). Executive function in typical and atypical development. In U. Goswami (Ed.), Blackwell handbook of childhood cognitive development (pp. 445–469). Malden, MA: Blackwell Publishing.

    Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

ZZ conceived of the study, participated in the coordination of the study, performed literature search, data extraction, coding, and statistical analysis, participated in the interpretation of the data, and drafted the manuscript; PP participated in the coordination of the study, contributed to the interpretation of the data, and helped draft the manuscript; DZ helped draft the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zheng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical Approval

All procedures in this meta-analysis were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Peng, P. & Zhang, D. Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-analysis of fMRI Studies. J Autism Dev Disord 50, 4022–4038 (2020). https://doi.org/10.1007/s10803-020-04461-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-020-04461-z

Keywords

Navigation