Skip to main content
Log in

Selective-leaching method to fabricate an Ir surface-enriched Ir-Ni oxide electrocatalyst for water oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Durable and precious metal-lean electrocatalyst for water oxidation in acidic media would be of great significance for the large-scale application of acidic water electrolysis. Here, we report an Ir-Ni binary oxide electrocatalyst for the oxygen evolution reaction (OER) fabricated by acid leaching of Ni from Ni-rich composite oxides prepared using pyrolysis method. This Ni-leached binary oxide possesses Ir-enriched surface, porous morphology, and rutile phase structure of IrO2 with contracted lattice. In contrast, Ir-Ni binary oxide with the same composition prepared using simple pyrolysis method exhibits a rod-like aggregated morphology with Ni-enriched surface. Catalytic activity for OER of the Ni-leached binary oxide is higher than that of the pyrolyzed Ir-Ni oxide and pure IrO2. More importantly, the Ni-leached binary oxide exhibits much superior durability during continuous oxygen evolution process under a constant potential of 1.6 V compared with the pyrolyzed binary oxide and pure IrO2. Attributed to the Ir-rich surface and the anchor effect of inner Ni atoms to outer Ir atoms, the Ni-leached binary oxide shows a possibility of reducing the demand of the expensive and scarce Ir in OER electrocatalyst for acidic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. González-Huerta RG, Ramos-Sánchez G, Balbuena PB (2014) Oxygen evolution in Co-doped RuO2 and IrO2: experimental and theoretical insights to diminish electrolysis overpotential. J Power Sources 391:69–76

    Article  Google Scholar 

  2. Corona-Guinto JL, Cardeño-García L, Martínez-Casillas DC, Sandoval-Pineda JM, Tamayo-Meza P, Silva-Casarin R, González-Huerta RG (2013) Performance of a PEM electrolyzer using RuIrCoOx electrocatalysts for the oxygen evolution electrode. Int J Hydrog Energy 38:12667–12673

    Article  CAS  Google Scholar 

  3. Parrondoa J, Argesa CG, Niedzwieckib M, Andersonb EB, Ayersb KE, Ramani V (2014) Degradation of anion exchange membranes used for hydrogen production by ultrapure water electrolysis. RSC Adv 4:9875–9879

    Article  Google Scholar 

  4. He X, Boehm RF (2009) Direct solar water splitting cell using water, WO3, Pt, and polymer electrolyte membrane. Energy 34:1454–1457

    Article  CAS  Google Scholar 

  5. Polonsky J, Petrushina IM, Christensen E, Bouzek K, Prag CB, Andersen JET, Bjerrum N (2012) Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers. Int J Hydrog Energy 37:2173–2181

    Article  CAS  Google Scholar 

  6. Song S, Zhang H, Ma X, Shao Z, Baker RT, Yi B (2008) Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. Int J Hydrog Energy 33:4955–4961

    Article  CAS  Google Scholar 

  7. Esswein AJ, McMurdo MJ, Ross PN, Bell AT, Tilley TD (2009) Size-dependent activity of Co3O4 nanoparticle anodes for alkaline water electrolysis. J Phys Chem C 113:15068–15072

    Article  CAS  Google Scholar 

  8. Zafeiratos S, Dintzer T, Teschner D, Blume R, Havecker M, Knop-Gericke A, Schlogl R (2010) Methanol oxidation over model cobalt catalysts: Influence of the cobalt oxidation state on the reactivity. J Catal 269:309–317

    Article  CAS  Google Scholar 

  9. Li YL, Zhao JZ, Dan YY, Ma DC, Zhao Y, Hou SN, Lin HB, Wang ZC (2011) Low temperature aqueous synthesis of highly dispersed Co3O4 nanocubes and their electrocatalytic activity studies. Chem Eng J 166:428–434

    Article  CAS  Google Scholar 

  10. Li Y, Hasin P, Wu Y (2010) NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater 22:1926–1929

    Article  CAS  Google Scholar 

  11. Laouini E, Berghoute Y, Douch J, Mendonça MH, Hamdani M, Pereira MIS (2009) Electrochemical behaviour of FexCo3-xO4 with (x = 0, 1, 2 and 3) oxides thin film electrodes in alkaline medium. J Appl Electrochem 39:2469–2479

    Article  CAS  Google Scholar 

  12. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14:397–426

    Article  CAS  Google Scholar 

  13. Gao MR, Xu YF, Jiang J, Zheng YR, Yu SH (2012) Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J Am Chem Soc 134:2930–2933

    Article  CAS  Google Scholar 

  14. Cummings CY, Marken F, Peter LM, Upul Wijayantha KG, Tahir AA (2012) New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J Am Chem Soc 134:1228–1234

    Article  CAS  Google Scholar 

  15. Jin S, Kevin JM, Hubert AG, John BG, Yang SH (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334:1383–1385

    Article  Google Scholar 

  16. Millet P, Dragoe D, Grigoriev S, Fateev V, Etievant C (2009) GenHyPEM: a research program on PEM water electrolysis supported by the European Commission. Int J Hydrog Energy 34:4974–4982

    Article  CAS  Google Scholar 

  17. Han JH, Lee SW, Kim SK, Han S, Lee W, Hwang CS (2012) Study on initial growth behavior of RuO2 film grown by pulsed chemical vapor deposition: Effects of substrate and reactant feeding time. Chem Mater 24:1407–1414

    Article  CAS  Google Scholar 

  18. Marshall AT, Sunde S, Tsypkin M, Tunold R (2007) Performance of a PEM water electrolysis cell using electrocatalysts for the oxygen evolution electrode. Int J Hydrog Energy 32:2320–2324

    Article  CAS  Google Scholar 

  19. Panić VV, Dekanski AB, Mitrić M, Milonjić SK, Mišković-Stanković VB, Nikolić BŽ (2010) The effect of the addition of colloidal iridium oxide into sol-gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties. Phys Chem Chem Phy 12:7521–7528

    Article  Google Scholar 

  20. Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2006) Electrochemical characterisation of IrxSn1−xO2 ppowders as oxygen evolution electrocatalysts. Electrochim Acta 51:3161–3167

    Article  CAS  Google Scholar 

  21. Marshall AT, Haverkamp RG (2010) Electrocatalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochim Acta 55:1978–1984

    Article  CAS  Google Scholar 

  22. Yoshinaga N, Sugimoto W, Takasu Y (2008) Oxygen reduction behavior of rutile-type iridium oxide in sulfuric acid solution. Electrochim Acta 54:566–573

    Article  CAS  Google Scholar 

  23. Zhao D, Yang P, Chmelka BF, Stucky GD (1999) Multiphase assembly of mesoporous-macroporous membranes. Chem Mater 11:1174–1178

    Article  CAS  Google Scholar 

  24. Nakagawa T, Beasley CA, Murray RW (2009) Efficient electro-oxidation of water near its reversible potential by a mesoporous IrOx nanoparticle film. J Phys Chem C 113:12958–12961

    Article  CAS  Google Scholar 

  25. Sawy ENE, Birss VI (2009) Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition. J Mater Chem 19:8244–8252

    Article  Google Scholar 

  26. Ortel E, Reier T, Strasser P, Kraehnert R (2011) Mesoporous IrO2 films templated by PEO-PB-PEO block-copolymers: Self-assembly, crystallization behavior, and electrocatalytic performance. Chem Mater 23:3201–3209

    Article  CAS  Google Scholar 

  27. Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22:6010–6016

    Article  CAS  Google Scholar 

  28. Li G, Yu H, Wang X, Sun S, Li Y, Shao Z, Yi B (2013) Highly effective IrxSn1-xO2 electrocatalysts for oxygen evolution reaction in the solid polymer electrolyte water electrolyser. Phys Chem Chem Phys 15:2858–2866

    Article  CAS  Google Scholar 

  29. Li G, Yu H, Wang X, Yang D, Li Y, Shao Z, Yi B (2014) Triblock polymer mediated synthesis of Ir-Sn oxide electrocatalysts for oxygen evolution reaction. J Power Sources 249:175–184

    Article  CAS  Google Scholar 

  30. Wang R, Xu C, Bi X, Ding Y (2012) Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ Sci 5:5281–5286

    Article  CAS  Google Scholar 

  31. Oezaslan M, Heggen M, Strasser P (2012) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macroscale. J Am Chem Soc 134:514–524

    Article  CAS  Google Scholar 

  32. Toberer ES, Seshadri R (2006) Template-free routes to porous inorganic materials. Chem Commun:3159–3165

  33. Wang RY, Wang C, Cai WB, Ding Y (2010) Ultralow-platinum-loading high-performance nanoporous electrocatalysts with nano-engineered surface structures. Adv Mater 22:1845–1848

    Article  CAS  Google Scholar 

  34. Hu W, Zhong H, Liang W, Chen S (2014) Ir-surface enriched porous Ir-Co oxide hierarchical architecture for high performance water oxidation in acidic media. ACS Appl Mater Interfaces 6:12729–12736

    Article  CAS  Google Scholar 

  35. Déronzier T, Morfin F, Massin L, Lomello M, Rousset JL (2011) Pure nanoporous gold powder: synthesis and catalytic properties. Chem Mater 23:5287–5289

    Article  Google Scholar 

  36. Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112:2770–2778

    Article  CAS  Google Scholar 

  37. Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129:12624–12625

    Article  CAS  Google Scholar 

  38. Chen S, Ferreira PJ, Sheng W, Yabuuchi N, Allard LF, Yang SH (2008) Enhanced activity for oxygen reduction reaction on “Pt3Co”nanoparticles: direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 130:13818–13819

    Article  CAS  Google Scholar 

  39. Baer DR, Engelhard MH (2010) XPS analysis of nanostructured materials and biological surface. J Electron Spectrosc Relat Phenom 178-179:415–432

    Article  CAS  Google Scholar 

  40. Reier T, Pawolek Z, Cherevko S, Bruns M, Jones T, Teschner D, Selve S, Bergmann A, Nong HN, Schlögl R, Mayrhofer KJJ, Peter S (2015) Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J Am Chem Soc 137:13031–13040

    Article  CAS  Google Scholar 

  41. Skriver HL, Rosengaard NM (1992) Surface energy and work function of elemental metals. Phys Rev B: Condens Matter Mater Phys 46:7157–7168

    Article  CAS  Google Scholar 

  42. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  43. Macounová K, Makarova M, Jirkovský J, Franc J, Krtil P (2008) Parallel oxygen and chlorine evolution on Ru1−xNixO2−y nanostructured electrodes. Electrochim Acta 53:6126–6134

    Article  Google Scholar 

  44. Hu W, Zhou P, Xu S, Chen S, Xia Q (2015) Template synthesis of 3-DOM IrO2 powder catalysts:temperature-dependent pore structure and electrocatalytic performance. J Mater Sci 50:2984–2992

    CAS  Google Scholar 

  45. Smith RDL, Sporinova B, Fagan RD, Trudel S, Berlinguette CP (2014) Facile photochemical preparation of amorphous iridium oxide films for water oxidation catalysis. Chem Mater 26:1654–1659

    Article  CAS  Google Scholar 

  46. Smith RDL, Prevot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340:60–63

    Article  CAS  Google Scholar 

  47. Smith RDL, Prévot MS, Fagan RD, Trudel S, Berlinguette CP (2013) Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J Am Chem Soc 135:11580–11586

    Article  CAS  Google Scholar 

  48. Cherevko S, Reier T, Zeradjanin AR, Pawolek Z, Strasser P, Mayrhofer KJJ (2014) Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem Commun 48:81–85

    Article  CAS  Google Scholar 

  49. Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Teschner D, Strasser P (2015) Oxide-supported IrNiOx core–shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54:2975–2979

    Article  CAS  Google Scholar 

  50. Da Silva LM, Francob DV, De Fariab LA, Boodts JFC (2004) Surface, kinetics and electrocatalytic properties of Ti/(IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production. Electrochim Acta 49:3977–3988

    Article  Google Scholar 

  51. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772

    Article  CAS  Google Scholar 

  52. Cherevko S, Zeradjanin AR, Topalov AA, Kulyk N, Katsounaros I, Mayrhofer KJJ (2014) Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6:2219–2223

    Article  CAS  Google Scholar 

  53. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer KJJ (2016) Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today 262:170–180

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Research Foundation of Education Bureau of Hubei Province, China (Grant No. Q20141007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Chen, S., Tian, L. et al. Selective-leaching method to fabricate an Ir surface-enriched Ir-Ni oxide electrocatalyst for water oxidation. J Solid State Electrochem 20, 1961–1970 (2016). https://doi.org/10.1007/s10008-016-3200-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3200-0

Keywords

Navigation