Skip to main content
Log in

Catalytic performance on the water decontamination and the water-splitting electrolysis of new phosphite salts (enH2)[M(H2O)6](HPO3)2 (M=Co, Ni and Mg)

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Three new organic–inorganic hybrid phosphites salts, namely, (enH2)[M(H2O)6](HPO3)2, with [M = Co (1), Ni (2) and Mg (3), and “en” refers to ethylenediamine C2N2H8] have been synthesized at room temperature by the slow evaporation method. The solid-state structures were solved from single crystal X-ray diffraction data. These compounds are isostructural, all crystallizing in the orthorhombic system, space group, Pbca (no 61). The FTIR spectroscopy shows the expected bands of ethylenediamine (en), water molecules, and hydrogen-phosphite oxoanion groups. The thermal stability until 100 °C of the three compounds was confirmed using combined analyses (TGA/DTA, powder X-ray diffraction and Raman spectroscopy). Two catalytic activity performances were investigated: the catalytic efficiency on the water decontamination of the three compounds by the reduction of three nitrophenol isomers and the Hydrogen Evolution Reaction (HER) in an alkaline environment. The three hybrid compounds turned out to be very efficient new catalysts for reducing the three nitrophenol isomers. The fastest electron transport and the most favorable HER reaction kinetics are displayed by (enH2)[Ni(H2O)6](HPO3)2, while the highest current density with the lowest overpotential was obtained for (enH2)[Co(H2O)6](HPO3)2.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821. https://doi.org/10.1038/nature00785

    Article  CAS  PubMed  Google Scholar 

  2. Parnham ER, Morris RE (2007) Ionothermal synthesis of zeolites, metal–organic frameworks, and inorganic-organic hybrids. Acc Chem Res 40:1005–1013. https://doi.org/10.1021/ar700025k

    Article  CAS  PubMed  Google Scholar 

  3. Jiang J, Yu J, Corma A (2010) Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. Angew Chem Int Ed 49:3120–3145. https://doi.org/10.1002/anie.200904016

    Article  CAS  Google Scholar 

  4. Natarajan S, Mandal S (2008) Open-framework structures of transition-metal compounds. Angew Chem Int Ed 47:4798–4828. https://doi.org/10.1002/anie.200701404

    Article  CAS  Google Scholar 

  5. Guillou N, Gao Q, Foster PM, Chang J-S, Nogues M, Park S-E, Ferey G, Cheetham AK (2001) Nickel (II) phosphate VSB-5: a magnetic nanoporous hydrogenation catalyst with 24-ring tunnels. Angew Chem Int Ed 40:2831–2834. https://doi.org/10.1002/1521-3773(20010803)40:15%3c2831::AID-ANIE2831%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  6. Wang P, Wang G-M, Li J-H, Wang Z-H, Wang Y-X, Lin J-H (2012) Syntheses and structures of two open-framework zinc phosphites with extra-large 24-ring channels. Solid State Sci 14:1030–1035. https://doi.org/10.1016/j.solidstatesciences.2012.05.007

    Article  CAS  Google Scholar 

  7. Lin H-Y, Chin C-Y, Huang H-L, Huang W-Y, Sie M-J, Huang L-H, Lee Y-H, Lin C-H, Lii K-H, Bu X, Wang S-L (2013) Crystalline inorganic frameworks with 56-ring, 64-ring, and 72-ring channels. Science 339:811–813. https://doi.org/10.1126/science.1232097

    Article  CAS  PubMed  Google Scholar 

  8. Teofilo R, Jose Luis M, Jorge L, Begona B, Pizarro JL, Isabel Arriortuab JL (2009) Organically templated open-framework phosphites. J Mater Chem 19:3793–3818. https://doi.org/10.1039/B808795B

    Article  Google Scholar 

  9. Yang Y, Zhao Y, Yu J, Wu S, Wang R (2008) Doping-induced structure variation of 1,3-cyclohexane-bis(methylamine)-templated zinc-phosphorus open structures. Inorg Chem 47:769–771. https://doi.org/10.1021/ic701825m

    Article  CAS  PubMed  Google Scholar 

  10. Wang G-M, Li J-H, Zhang X, Jiang W-W, Bao Z-Z, Zhao X-M, Wang Y-X, Lin J-H (2014) (C5H6N)4[Be6(HPO3)8]·H2O: a low-density open-framework beryllium phosphite with multidirectional 12-ring channels. Solid State Sci 33:53–57. https://doi.org/10.1016/j.solidstatesciences.2014.04.013

    Article  CAS  Google Scholar 

  11. Bonavia G, De Bord J, Haushalter RC, Rose D, Zubieta J (1995) Hydrothermal synthesis and characterization of two- and three-dimensional solids of the oxovanadium(IV)-phosphite system. the structures of [HN(Me)(CH2CH2)2N(Me)H][(VO)4(OH)2(HPO3)4], [H2N(CH2CH2)2NH2][(VO)3(HPO3)4(H2O)2], and [VO(HPO3)(H2O)]. Chem Mater 7:1995–1998. https://doi.org/10.1021/cm00059a002

    Article  CAS  Google Scholar 

  12. Zhao L, Li J, Chen P, Li G, Yu J, Xu R (2008) [Co8 (HPO3)9(CH3OH)3]·2H2O: an open-framework cobalt phosphite containing extra-large 18-ring channels. Chem Mater 20:17–19. https://doi.org/10.1021/cm7021906

    Article  CAS  Google Scholar 

  13. Liang J, Li J, Yu J, Chen P, Li L, Xu R (2006) [Ni(C6N2H14)2][Zn4 (H2O)(HPO3)5]: a new open-framework zinc phosphite with intersecting 8-, 12- and 16-ring channels. J Solid-State Chem 179:1977–1983. https://doi.org/10.1016/j.jssc.2006.03.034

    Article  CAS  Google Scholar 

  14. Chen W, Li N, Xiang S (2004) Zn3(HPO3)4·Zn(H2O)6: a purely inorganic open-framework zincophosphite with octahedral zinc complex [Zn(H2O)6]2+ encapsulating in the channels. J Solid-State Chem 177:3229–3234. https://doi.org/10.1016/j.jssc.2004.04.060

    Article  CAS  Google Scholar 

  15. Li J, Li L, Liang J, Chen P, Yu J, Xu Y, Xu R (2008) Template-designed syntheses of open-framework zinc phosphites with extra-large 24-ring channels. Cryst Growth Des 8:2318–2323. https://doi.org/10.1021/cg701080u

    Article  CAS  Google Scholar 

  16. Luo X, Luo D, Zeng H, Gong M, Chen Y, Lin Z (2011) A 3,4-connected beryllium phosphite framework containing 24-ring channels with a very low density. Inorg Chem 50:8697–8699. https://doi.org/10.1021/ic2014539

    Article  CAS  PubMed  Google Scholar 

  17. Lai Y-L, Lii K-H, Wang S-L (2007) 26-ring-channel structure constructed from bimetal phosphite helical chains. J Am Chem Soc 129:5350–5351. https://doi.org/10.1021/ja070733k

    Article  CAS  PubMed  Google Scholar 

  18. Fernandez S, Mesa JL, Pizarro JL, Chung U-C, Arriortua MI, Rojo T (2005) Two new two-dimensional organically templated phosphite compounds:(C6H16N2)0.5[M (HPO3)F], M= Fe(II) and Co(II): solvothermal synthesis, crystal structures, thermal, spectroscopic, and magnetic properties. J Solid-State Chem 178:3554–3562. https://doi.org/10.1016/j.jssc.2005.09.032

    Article  CAS  Google Scholar 

  19. Wang KC, Bian YX, Li J, Xu DG, Lin ZE (2016) Amine-ligated approach for the synthesis of extra-large-pore zinc phosphites with qtz-h and bnn topologies. Inorg Chem 55:3727–3729. https://doi.org/10.1021/acs.inorgchem.6b00589

    Article  CAS  PubMed  Google Scholar 

  20. Fernandez S, Mesa JL, Pizarro JL, Lezama L, Arriortua MI, Olazcuaga R, Rojo T (2000) A new layered inorganic-organic hybrid manganese (II) phosphite:(C2H10N2)[Mn3 (HPO3)4]. Hydrothermal synthesis, crystal structure, and spectroscopic and magnetic properties. Chem Mater 12:2092–2098. https://doi.org/10.1021/cm001026s

    Article  CAS  Google Scholar 

  21. Fernandez S, Mesa JL, Pizarro JL, Lezama L, Arriortua MI, Rojo T (2001) Hydrothermal synthesis of a new layered inorganic-organic hybrid cobalt (II) phosphite:(C2H10N2)[Co3(HPO3)4]: crystal structure and spectroscopic and magnetic properties. Int J Inorg Mater 3:331–336. https://doi.org/10.1016/S1466-6049(01)00031-9

    Article  CAS  Google Scholar 

  22. Ouarsal R, Tahiri AA, El Bali B, Lachkar M, Bolte M (2002) Strontium dihydrogenphosphite. Acta Crystallogr Sect E E58:i19–i20. https://doi.org/10.1107/S1600536802000806

    Article  CAS  Google Scholar 

  23. Ouarsal R, Tahiri AA, Lachkar M, Slimani Z, El Bali B, Bolte B (2002) Barium dihydrogen phosphate hemihydrates. Acta Crystallogr Sect E E58:i72–i73. https://doi.org/10.1107/S1600536802013569

    Article  CAS  Google Scholar 

  24. Chaouche S, Ouarsal R, El Bali B, Lachkar M, Bolte M, Dusek M (2010) Li2HPO3 H2O: crystal structure and IR spectrum. J Chem Crystallogr 40:526–530. https://doi.org/10.1007/s10870-010-9690-1

    Article  CAS  Google Scholar 

  25. El Bali B, Massa W (2002) Redetermination of copper(II) hydrogenphosphite dehydrate. Acta Crystallogr E E58:i29–i31. https://doi.org/10.1107/S1600536802003574

    Article  CAS  Google Scholar 

  26. Chaouch S, Ouarsal R, Akouibaa M, Rakib S, Lachkar M, El Bali B, Dusek M (2018) Cs2[M(H2O)6]3(HPO3)4, M= Co, Ni: Crystal structures, IR and thermal studies. J Phys Conf Ser 984:12–15. https://doi.org/10.1088/1742-6596/984/1/012015

    Article  CAS  Google Scholar 

  27. Ouarsal R, Tahiri AA, El Bali B, Lachkar M, Harrison WTA (2002) Sodium zinc tris(dihydrogenphosphite) hydrate NaZn(H2PO3)3⋅H2O. Acta Crystallogr E58:i23–i25. https://doi.org/10.1107/S1600536802002209

    Article  CAS  Google Scholar 

  28. Ouarsal R, Tahiri AA, Lachkar M, Dusek M, Fejfarová K, El Bali B (2003) Sodium magnesium tris(dihydrogenphosphite)monohydratehydrate, NaMg(H2PO3)3⋅H2O. Acta Crystallogr E59:i33–i35. https://doi.org/10.1107/S1600536803002757

    Article  CAS  Google Scholar 

  29. Ouarsal R, Essehli R, Lachkar M, Zenkouar M, Dusek M, Fejfarová K, El Bali B (2004) Dipotassium cobalt(II) bis(hydrogenphosphite) dihydrate, K2Co(HPO3)2⋅2H2O. Acta Crystallogr E60:i66–i68. https://doi.org/10.1107/S1600536804007895

    Article  CAS  Google Scholar 

  30. Menssouri I, El Bali B, Capitelli F, Piniella JF, Lachkar M, Slimani Z (2005) Diammoniumtris[hexaaquamagnesium(II)]tetrakis[hydrogenphosphate(III)], (NH4)2[Mg(H2O)6]3(HPO3)4. Acta Crystallogr E61:i129–i131. https://doi.org/10.1107/S160053680501723X

    Article  CAS  Google Scholar 

  31. Ouarsal R, El Bali B, Lachkar M, Dusek M, Fejfarova K (2005) Diammoniumtris [hexaaquanickel(II)] tetrakis[hydrogenphosphate(III)], (NH4)2[Ni(H2O)6]3(HPO3)4. Acta Crystallogr E61:i171–i173. https://doi.org/10.1107/S1600536805021720

    Article  CAS  Google Scholar 

  32. Ouarsal R, El Bali B, Lachkar M, Dusek M, Fejfarova k, (2005) Diammonium tris[hexaaquacobalt(II)] tetrakis[hydrogenphosphate(III)], (NH4)2[Co(H2O)6]3(HPO3)4. Acta Crystallogr E61:i168–i170. https://doi.org/10.1107/S1600536805021719

    Article  CAS  Google Scholar 

  33. Ouarsal R, Lachkar M, Dusek M, Albert EB, Castelló GBC, El Bali B (2016) Crystal structure of NaCd(H2PO3)3⋅H2O and spectroscopic study of NaM(H2PO3)3⋅H2O, M = Mn Co, Ni, Zn, Mg and Cd. Polyhedron 106:132–137. https://doi.org/10.1016/j.poly.2016.01.006

    Article  CAS  Google Scholar 

  34. Chaouche S, Ouarsal R, Lachkar M, Capitelli F, El Bali B (2010) Crystal structure and IR study of (C6H5NH3)[ZnCl(HPO3)]. J Chem Crystallogr 40:486–490. https://doi.org/10.1007/s10870-009-9682-1

    Article  CAS  Google Scholar 

  35. Hamdi N, Chaouch S, da Silva I, Ezahri M, Lachkar M, Alhasan R, Yaman Abdin A, Jacob C, El Bali B (2019) Synthesis, structural characterization, and biological activities of organically templated cobalt phosphite (C4N2H14)[Co(H2PO3)4]·2H2O. Sci 1:41. https://doi.org/10.3390/sci1020041

    Article  Google Scholar 

  36. Hamdi N, Hidaoui S, Hassani HO, Lachkar M, Dusek M, Morley N, El Bali B (2020) Crystal structure, physical and catalytic oxidation studies of a new hybrid phosphate [(N2H5)2Co(HPO4)2]. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128317

    Article  Google Scholar 

  37. Escobal J, Pizarro JL, Mesa JL, Lezama L, Olazcuaga R, Arriortua MI, Rojo T (2000) A new manganese (II) phosphate templated by ethylenediamine: (C2H10N2)[Mn2(HPO4)3(H2O)]. Hydrothermal synthesis, crystal structure, and spectroscopic and magnetic properties. Chem Mater 12:376–382. https://doi.org/10.1021/cm9910815

    Article  CAS  Google Scholar 

  38. Fernández S, Mesa JL, Pizarro JL, Lezama L, Arriortua MI, Olazcuaga R, Rojo T (2000) A new layered inorganic-organic hybrid manganese (II) phosphite: (C2H10N2)[Mn3(HPO3)4]. Hydrothermal synthesis, crystal structure, and spectroscopic and magnetic properties. Chem Mater 12:2092–2098. https://doi.org/10.1021/cm001026s

    Article  CAS  Google Scholar 

  39. Ramaswamy P, Mandal S, Natarajan S (2009) Synthesis, structure and magnetic behavior of a new three-dimensional manganese phosphite-oxalate: [C2N2H10][Mn2II(H2O)2(HPO3)2(C2O4)]. J Solid-State Chem 182:2491–2496. https://doi.org/10.1016/j.jssc.2009.06.040

    Article  CAS  Google Scholar 

  40. Jeffrey RD, De Bord J, Reiff WM, Haushalter RC, Zubieta J (1996) The first organically templated layered iron phosphate: hydrothermal synthesis, structure, magnetic properties, and the Mössbauer spectrum of [H3NCH2CH2NH3]0.5[Fe(OH)(PO4)]. J Solid-State Chem 125:186–191. https://doi.org/10.1006/jssc.1996.0284

    Article  Google Scholar 

  41. Fernández S, Mesa JL, Pizarro JL, Lezama L, Arriortua MI, Rojo T (2002) Two new three-dimensional vanadium (III) and iron (III) phosphites templated by ethylenediamine: (C2H10N2)0.5[M(HPO3)2]. ab initio structure determination, spectroscopic, and magnetic properties. Chem Mater 14:2300–2307. https://doi.org/10.1021/cm0112845

    Article  CAS  Google Scholar 

  42. Fernández S, Mesa JL, Pizarro JL, Lezama L, Arriortua MI, Rojo T (2001) Hydrothermal synthesis of a new layered inorganic-organic hybrid cobalt (II) phosphite: (C2H10N2)[Co3(HPO3)4]: crystal structure and spectroscopic and magnetic properties. Int J Inorg Mater 3:331–336. https://doi.org/10.1016/S1466-6049(01)00031-9

    Article  Google Scholar 

  43. Chung U-C, Mesa J, Pizarro J, Lezama L, Garitaonandia J, Chapman JP, Arriortua MI (2004) A new layered organically templated iron(II) phosphite, (C2H10N2)Fe3(HPO3)4: hydrothermal synthesis, crystal structure and spectroscopic and magnetic properties. J Solid-State Chem 177:2705–2713. https://doi.org/10.1016/j.jssc.2004.04.020

    Article  CAS  Google Scholar 

  44. Yeşilel OZ, Ölmez H, Arici C (2007) The first bis (orotato-N, O) cadmium complex with monodentate protonated ethylenediamine ligands: synthesis, spectrothermal properties of a cadmium (II)-orotato complex with ethylenediamine–crystal structure of trans-[Cd(HOr)2(enH)2]·2H2O and cis-[Cd(H2O)2(phen)2](H2Or)2·2H2O. Polyhedron 26:3669–3674. https://doi.org/10.1016/j.poly.2007.03.060

    Article  CAS  Google Scholar 

  45. Yang G-Y, Sevov SC (2001) [Co(en)3][B2P3O11(OH)2]: a novel borophosphate templated by a transition-metal complex. Inorg Chem 40:2214–2215. https://doi.org/10.1021/ic001397a

    Article  CAS  PubMed  Google Scholar 

  46. Pham DNK, Roy M, Golen JA, Manke DR (2017) The first-row transition-metal series of tris (ethylenediamine) diacetate complexes [M(en)3](OAc)2 (M is Mn, Fe Co, Ni, Cu, and Zn). Acta Crystallogr C 73:442–446. https://doi.org/10.1107/S2053229617006738

    Article  CAS  Google Scholar 

  47. Dardar F, Day CS, El Jazouli A, Sebti S, Lachgar A (2019) Synthesis and characterization of a new layered gallium phosphonate oxalate [C2H10N2]0.5[Ga3 (PO3CH3)4(C2O4)]⋅H2O. J Chem Crystallogr 49:44–51. https://doi.org/10.1007/s10870-018-00762-5

    Article  CAS  Google Scholar 

  48. Espinosa Bosch M, Ruiz Sánchez AJ, Sánchez Rojas F, Bosch Ojeda C (2006) Determination of paracetamol: historical evolution. J Pharm Biomed 42:291–321. https://doi.org/10.1016/j.jpba.2006.04.007

    Article  CAS  Google Scholar 

  49. Yang P, Xua A, Xiab J, Hea J, Xinga H, Zhanga X, Weia S, Wanga N (2014) Facile synthesis of highly catalytic activity Ni-Co-Pd-P composite for reduction of the p-Nitrophenol. Appl Catal Gen 470:89–96. https://doi.org/10.1016/j.apcata.2013.10.043

    Article  CAS  Google Scholar 

  50. Akouibaa M, Hassani HO, Ouarsal R, Rakib S, Lachkar M, Poupon M, Dusek M, Morley N, El Bali B (2022) (H3dien)[Ni(NO3)(C2O4)2]⋅2H2O: synthesis, crystal structure, catalytic activity and magnetic study. Chem Data Collect 42:100969. https://doi.org/10.1016/j.cdc.2022.100969

    Article  CAS  Google Scholar 

  51. Hidaoui S, Hamdi N, Akouibaa M, Benali-Cherif R, Vaclav E, Dusek M, Lachkar M, El Bali B (2022) Synthesis, crystal structure and catalytic activity of the new hybrid phosphate (C4H12N2)[Co(H2O)6](HPO4)2. J Mol Struct 1265:133296. https://doi.org/10.1016/j.molstruc.2022.133296

    Article  CAS  Google Scholar 

  52. Akouibaa M, Kadiri M, Driouch M, Tanji K, Ouarsal R, Rakib S, Sfaira M, Morley N, Lachkar M, El Bali B, Zarrouk A, Bendeif E (2023) Synthesis, catalytic activity, magnetic study and anticorrosive activity of mild steel in HCl 1M medium of (H3dien)[Cu(NO3)(C2O4)2]⋅2H2O. A redetermination at 100 K. Mater Chem Phys 307:128130. https://doi.org/10.1016/j.matchemphys.2023.128130

    Article  CAS  Google Scholar 

  53. Ramírez-Rave S, Hernández-Gordillo A, Calderón HA, Galano A, García-Mendoza C, Gómez R (2015) Synthesis of new ZnS–Bipy based hybrid organic–inorganic materials for photocatalytic reduction of 4-nitrophenol. New J Chem 39:2188–2194. https://doi.org/10.1039/C4NJ01891E

    Article  CAS  Google Scholar 

  54. Li N, Sun Q, Zhang P, Jing P (2021) Hydrothermal synthesis of 1T-MoS2/pelagic clay composite and its application in the catalytic reduction of 4-nitrophenol. Materials 14:7020. https://doi.org/10.3390/ma14227020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hassani HO, Akouibaa M, Rakass S, Abboudi M, El Bali B, Lachkar M, Al Wadaani F (2021) A simple and cost-effective new synthesis method of copper molybdate CuMoO4 nanoparticles and their catalytic performance. J Sci Adv Mater Devices 6:501–507. https://doi.org/10.1016/j.jsamd.2021.06.003

    Article  CAS  Google Scholar 

  56. Mohamed MJS, Shenoy S, Bhat DK (2018) Novel NRGO-CoWO4-Fe2O3 nanocomposite as an efficient catalyst for dye degradation and reduction of 4-nitrophenol. Mater Chem Phys 208:112–122. https://doi.org/10.1016/j.matchemphys.2018.01.012

    Article  CAS  Google Scholar 

  57. Dedzo GK, Pameté E, Saheu MRT, Ngnie G, Nanseu-Njiki CP, Detellier C, Ngameni E (2017) Hydrogen evolution reaction at PdNPs decorated 1:1 clay minerals and application to the electrocatalytic determination of p-nitrophenol. J Electroanal Chem 801:49–56. https://doi.org/10.1016/j.jelechem.2017.07.030

    Article  CAS  Google Scholar 

  58. Zhao H, Yuan ZY (2020) Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem 12:3797–3810. https://doi.org/10.1002/cctc.202000360

    Article  CAS  Google Scholar 

  59. Zhao H, Yuan ZY (2017) Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catal Sci Technol 7:330–347. https://doi.org/10.1039/C6CY01719C

    Article  CAS  Google Scholar 

  60. Agilent (2010) CrysAlis PRO. Agilent Technologies, Yarnton, England

  61. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) a new tool for crystal structure determination and refinement. J Appl Cryst 32:115–119. https://doi.org/10.1107/S0021889898007717

    Article  CAS  Google Scholar 

  62. Palatinus L, Chapuis G, (2007) A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Cryst 40:786–790. https://doi.org/10.1107/S0021889807029238

    Article  CAS  Google Scholar 

  63. Petříček V, Palatinus L, Plášil J, Dušek M (2023) Jana 2020–a new version of the crystallographic computing system Jana. Z fur Krist Cryst Mater. https://doi.org/10.1515/zkri-2023-0005

    Article  Google Scholar 

  64. Brandenburg K, Putz KH (2005) DIAMOND. Version 3. Crystal impact GbR, Bonn, Germany

  65. Chen L, Sagar RUR, Chen J, Liu J, Aslam S, Nosheen F, Anwar T, Hussain N, Hou X, Liang T (2021) Cobalt phthalocyanine as an efficient catalyst for hydrogen evolution reaction. Int J Hydrog Energy 46:19338–19346. https://doi.org/10.1016/j.ijhydene.2021.03.075

    Article  CAS  Google Scholar 

  66. Escobal J, Pizarro JL, Mesa JL, Arriortua MI, Rojo T (2000) An ionic nickel (II) phosphate with ethylenediamine:(C2H10N2)[Ni(H2O)6](HPO4)2. Hydrothermal synthesis, crystal structure, and spectroscopic properties. J Solid-State Chem 154:460–465. https://doi.org/10.1006/jssc.2000.8865

    Article  CAS  Google Scholar 

  67. Shan Y, Huang SD (1999) (C2H10N2)[Co(H2O)6](HPO4)2: a supramolecular three-dimensional hydrogen-bonding network. Acta Crystallogr C 55:921–923. https://doi.org/10.1107/S0108270199001584

    Article  PubMed  Google Scholar 

  68. Witty M, Dingra NN, Abboud KA, Felts AC, Na Ayudhya TI (2017) Nuclear magnetic resonance and X-ray crystallography to improve struvite determination. Anal Lett 50:2549–2559. https://doi.org/10.1080/00032719.2017.1302459

    Article  CAS  Google Scholar 

  69. Steiner T (2002) Die wasserstoffbrücke im festkörper. Angew Chem 114:50–80. https://doi.org/10.1002/1521-3757(20020104)114:1%3c50::AID-ANGE50%3e3.0.CO;2-H

    Article  Google Scholar 

  70. Shreif A, Farag MA, El-Sherbiny MA, Hassaan MY (2023) Effect of Zr ions on the structure and optical properties of lithium borosilicate molybdate glass system. Ceram Int 49:8709–8717

    Article  CAS  Google Scholar 

  71. Gharbi A, Jouini A, Averbuch-Pouchot MT, Durif AJ (1994) Ethylenediammonium bis [copper(II) monohydrogendiphosphate ethylenediamine]trihydrate. J Solid-State Chem 111:330–337. https://doi.org/10.1006/jssc.1994.1235

    Article  CAS  Google Scholar 

  72. Dolphin D, Wick AE (1977) Tabulation of infrared spectral data. John Wiley and Sons, New York

    Google Scholar 

  73. Nakamoto k, (1997) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley & Sons, New York

    Google Scholar 

  74. Berg RW, Rasmussen K (1971) Vibrational spectra of ethylenediamine salts. I. Tentative assignments of infrared and far infrared spectra. Spectrosc Lett 4:285–293. https://doi.org/10.1080/00387017108064652

    Article  CAS  Google Scholar 

  75. John M, Santha N, Nayar VU, Keresztury G (1993) Vibrational spectroscopic studies of Sr[(CH2)2(NH3)2]3P4O12⋅14H2O. Indian J Phys 67:413–420

    Google Scholar 

  76. Angeloni L, Marzocchi CE, MP, (1977) Single crystal vibrational studies of hydrogen bonding in ethylenediammonium chloride. Chem Phys 26:257–265. https://doi.org/10.1016/0301-0104(77)87050-X

    Article  CAS  Google Scholar 

  77. Marchewka MK, Drozd M (2012) Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate. Spectrochim Acta A 99:223–233. https://doi.org/10.1016/j.saa.2012.09.026

    Article  CAS  Google Scholar 

  78. Akouibaa M, Lakkab I, Direm A, Lachkar M, Ouarsal R, Rakib S, Nasif V, Sayin K, Morley N, El Bali B (2023) [Cu2(ox)(dien)2](NO3)3, a precursor for preparation of CuO nanoparticles: synthesis, structural, Hirshfeld surface analyses, and physico-chemical investigations. J Mol Struct 1282:135258. https://doi.org/10.1016/j.molstruc.2023.135258

    Article  CAS  Google Scholar 

  79. HighScore Plus | XRD Analysis Software | Malvern Panalytical. https://www.malvernpanalytical.com/en/products/category/software/x-ray-diffraction-software/highscore-with-plus-option (accessed 17 Sept 2020)

  80. Gates-Rector S, Blanton T (2019) The powder diffraction file: a quality materials characterization database. Powder Diffr 34:352–360. https://doi.org/10.1017/S0885715619000812

    Article  CAS  Google Scholar 

  81. Dolenko TA, Burikov SA, Dolenko SA, Efitorov AO, Plastinin IV, Yuzhakov VI, Patsaeva SV (2015) Raman spectroscopy of water–ethanol solutions: the estimation of hydrogen bonding energy and the appearance of clathrate-like structures in solutions. J Phys Chem A 119:10806–10815. https://doi.org/10.1021/acs.jpca.5b06678

    Article  CAS  PubMed  Google Scholar 

  82. Ito H, Sone K (1985) On the assignment of band II in the electronic spectrum of [Ni(H2O)6]2+. Bull Chem Soc Jpn 58:2703–2704. https://doi.org/10.1246/bcsj.58.2703

    Article  CAS  Google Scholar 

  83. Fernández S, Mesa JL, Pizarro JL, Lezama L, Arriortua ML, Rojo T (2002) Two new three-dimensional vanadium (III) and iron (III) phosphites templated by ethylenediamine:(C2H10N2)0.5[M(HPO3)2]. Ab initio structure determination, spectroscopic, and magnetic properties. Chem Mater 14:2300–2307. https://doi.org/10.1021/cm0112845

    Article  CAS  Google Scholar 

  84. Landry-Hum J, Bussière G, Daniel C, Reber C (2001) triplet electronic states in d2 and d8 complexes probed by absorption spectroscopy: a CASSCF/CASPT2 analysis of [V(H2O)6]3+ and [Ni(H2O)6]2+. Inorg Chem 40:2595–2601. https://doi.org/10.1021/ic0010860

    Article  CAS  PubMed  Google Scholar 

  85. Bussière G, Reber C (1998) coupled excited states in nickel (II) complexes probed by polarized absorption spectroscopy. J Am Chem Soc 120:6306–6315. https://doi.org/10.1021/ja9740733

    Article  Google Scholar 

  86. Hassani HO, Al Wadaani FT (2018) Preparation, characterization and catalytic activity of nickel molybdate (NiMoO4) nanoparticles. Molecules 23:273. https://doi.org/10.3390/molecules23020273

    Article  CAS  Google Scholar 

Download references

Funding

ZE thanks the Scientific and Technological Research Council of Turkey (Grant Number: TUBITAK 2219) for a postdoctoral fellowship. MDS thanks the Royal Society for a University Research Fellowship (150104). This research was supported by the project 20-LM2023051 of the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

MA performed all the syntheses and descibed the results, helped somewhere by RO under the supervision of ML; MP, VE and MD performed the single crystal X-ray diffraction, JM and JP measured the Raman spectra and TG/TDA measurements, ZE and MDS studied the catalytic performance of the searched materials. BEB suggested the research and validated the manuscript.

Corresponding author

Correspondence to Brahim El Bali.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1833 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akouibaa, M., El Bali, B., Poupon, M. et al. Catalytic performance on the water decontamination and the water-splitting electrolysis of new phosphite salts (enH2)[M(H2O)6](HPO3)2 (M=Co, Ni and Mg). J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02097-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02097-w

Keywords

Navigation