Skip to main content
Log in

Electrochemical determination of butylhydroxyanisole (BHA) using a carbon fiber microelectrode modified by electrodeposition of gold nanoparticles and poly-NiTSPc film

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We present an approach on the electrodeposition of gold nanoparticles (AuNPs) on a carbon fiber microelectrode (CFME) followed by deposition of nickel(II) tetrasulfonated phthalocyanine (p-NiTSPc) film by electropolymerization to form CFME-AuNPs/p-NiTSPc, for the sensitive determination of butylhydroxyanisole (BHA) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the topography, morphology, and elemental composition of CFME, CFME-AuNPs, CFME-p-NiTSPc, and CFME-AuNPs/p-NiTSPc, respectively. Additionally, the electrochemical impedance spectroscopy (EIS) technique was employed to evaluate the charge-transfer rate of the tested sensors. To establish the optimal conditions for the electroanalysis of BHA, various parameters were investigated, including the potential scan rate, pH, and electrolysis potential. CFME-AuNPs/p-NiTSPc demonstrated the highest BHA signal, corresponding to the highest active surface area of 0.025 cm2, compared to CFME-p-NiTSPc (0.024 cm2), CFME-AuNPs (0.022 cm2), and CFME (0.021 cm2). In a phosphate buffer solution (PBS, 0.1 M; pH 3), a good linear relationship (R2 = 0.998) was observed between peak current intensities and BHA concentrations in the range of 10–80 µM, resulting to a detection limit (LOD) of 3.60 µM (S/N = 3) and a quantification limit (LOQ) of 12 µM (S/N = 10). The analytical HPLC technique was also tested for BHA determination within the concentration range of 5.55–55.48 µM and the obtained LOD was calculated to be 4.41 µM. The potential interference of certain species that could affect the BHA oxidation signal was also evaluated, followed by the application of CFME-AuNPs/p-NiTSPc in real water and Mitosyl ointment samples. The recovery values of BHA were acceptable, ranging from 96 to 99% and demonstrating that the developed sensor is highly sensitive and effective for detecting trace amounts of BHA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The original data used in this study can be obtained from the submitting author if requested.

References

  1. Xu X, Liu A, Hu S, Ares I, Martínez-Larrañaga MR, Wang X, Martinez M, Anadon A, Martínez MA (2021) Synthetic phenolic antioxidants: metabolism, hazards and mechanism of action. Food Chem 353:129488. https://doi.org/10.1016/j.foodchem.2021.129488

    Article  CAS  PubMed  Google Scholar 

  2. Prasad VU, Divakar TE, Hariprasad K, Sastry CSP (1987) Spectrophotometrie determination of some antioxidants in oils and fats. Food Chem 25:159–164. https://doi.org/10.1016/0308-8146(87)90065-3

    Article  CAS  Google Scholar 

  3. Naji KM, Thamer FH, Numan AA, Dauqan EM, Alshaibi YM, D’souza MR (2020) Ferric-bipyridine assay: a novel spectrophotometric method for measurement of antioxidant capacity. Heliyon 6:e03162. https://doi.org/10.1016%2Fj.heliyon.2020.e03162

    Article  PubMed  PubMed Central  Google Scholar 

  4. Capitán-Vallvey LF, Valencia MC, Nicolás EA (2004) Solid-phase ultraviolet absorbance spectrophotometric multisensor for the simultaneous determination of butylated hydroxytoluene and co-existing antioxidants. Anal Chim Acta 503:179–186. https://doi.org/10.1016/j.aca.2003.10.027

    Article  CAS  Google Scholar 

  5. Munteanu IG, Apetrei C (2021) Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci 22:3380. https://doi.org/10.3390/ijms22073380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xiu-Qin L, Chao J, Yan-Yan S, Min-Li Y, Xiao-Gang C (2009) Analysis of synthetic antioxidants and preservatives in edible vegetable oil by HPLC/TOF-MS. Food Chem 113:692–700. https://doi.org/10.1016/j.foodchem.2008.07.072

    Article  CAS  Google Scholar 

  7. Kim J-M, Choi S-H, Shin G-H, Lee J-H, Kang S-R, Lee KY, Lim H-S, Kang TS, Lee O-H (2016) Method validation and measurement uncertainty for the simultaneous determination of synthetic phenolic antioxidants in edible oils commonly consumed in Korea. Food Chem 213:19–25. https://doi.org/10.1016/j.foodchem.2016.06.053

    Article  CAS  PubMed  Google Scholar 

  8. Saad B, Sing YY, Nawi MA, Hashim N-H, Ali ASM, Saleh MI, Sulaiman SF, Talib KM, Ahmad K (2007) Determination of synthetic phenolic antioxidants in food items using reversed-phase HPLC. Food Chem 105:389–394. https://doi.org/10.1016/j.foodchem.2006.12.025

    Article  CAS  Google Scholar 

  9. Mateos R, Vera S, Díez-Pascual AM, Paz SAM (2017) Graphene solid phase extraction (SPE) of synthetic antioxidants in complex food matrices. J Food Comp Anal 62:223–230. https://doi.org/10.1016/j.jfca.2017.07.006

    Article  CAS  Google Scholar 

  10. Sin DWM, Wong YC, Mak CY, Sze ST, Yao WY (2006) Determination of five phenolic antioxidants in edible oils: method validation and estimation of measurement uncertainty. J Food Comp Anal 19:784–791. https://doi.org/10.1016/j.jfca.2005.12.005

    Article  CAS  Google Scholar 

  11. Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M (2016) Determination of synthetic phenolic antioxidants in edible oils using microvial insert large volume injection gas-chromatography. Food Chem 200:249–258. https://doi.org/10.1016/j.foodchem.2016.01.026

    Article  CAS  PubMed  Google Scholar 

  12. Gupta MK, Anand A, Asati A, Thati R, Katragunta K, Agarwal R, Mudiam MKR (2021) Quantitative determination of phenolic antioxidants in fruit juices by GC-MS/MS using automated injector port silylation after QuEChERS extraction. Microchem J 160:105705. https://doi.org/10.1016/j.microc.2020.105705

    Article  CAS  Google Scholar 

  13. Ding M, Zou J (2012) Rapid micropreparation procedure for the gas chromatographic-mass spectrometric determination of BHT, BHA and TBHQ in edible oils. Food Chem 131:1051–1055. https://doi.org/10.1016/j.foodchem.2011.09.100

    Article  CAS  Google Scholar 

  14. Delgado-Zamarreño MM, González-Maza I, Sánchez-Pérez A, Martínez RC (2007) Analysis of synthetic phenolic antioxidants in edible oils by micellar electrokinetic capillary chromatography. Food Chem 100:1722–1727. https://doi.org/10.1016/j.foodchem.2005.10.018

    Article  CAS  Google Scholar 

  15. Aghdam AA, Majidi MR, Veladi H, Omidi Y (2019) Microfluidic-based separation and detection of synthetic antioxidants by integrated gold electrodes followed by HPLC-DAD. Microchem J 149:104059. https://doi.org/10.1016/j.microc.2019.104059

    Article  CAS  Google Scholar 

  16. Jakubczyk M, Michalkiewicz S (2018) Electrochemical behavior of butylated hydroxyanisole and butylated hydroxytoluene in acetic acid solutions and their voltammetric determination in pharmaceutical preparations. Int J Electrochem Sci 13:4251–4266. https://doi.org/10.20964/2018.05.76

    Article  CAS  Google Scholar 

  17. Caramit RP, Andrade AGF, Souza JBG, Araujo TA, Viana LH, Trindade MAG, Ferreira VS (2013) A new voltammetric method for the simultaneous determination of the antioxidants TBHQ and BHA in biodiesel using multi-walled carbon nanotube screen-printed electrodes. Fuel 105:306–313. https://doi.org/10.1016/j.fuel.2012.06.062

    Article  CAS  Google Scholar 

  18. Lin X, Ni Y, Kokot S (2013) Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal Chim Acta 765:54–62. https://doi.org/10.1016/j.aca.2012.12.036

    Article  CAS  PubMed  Google Scholar 

  19. Wang P, Han C, Zhou F, Lu J, Han X, Wang Z (2016) Electrochemical determination of tert-butylhydroquinone and butylatedhydroxyanisole at choline functionalized film supported graphene interface. Sens Actuator B Chem 224:885–891. https://doi.org/10.1016/j.snb.2015.10.098

    Article  CAS  Google Scholar 

  20. Oliveira TMBF, Becker H, Longhinotti E, De Souza D, De Lima-Neto P, Correia AN (2013) Carbon-fiber microelectrodes coupled with square-wave voltammetry for the direct analysis of dimethomorph fungicide in natural waters. Microchem J 109:84–92. https://doi.org/10.1016/j.microc.2012.03.032

    Article  CAS  Google Scholar 

  21. Maringa A, Nyokong T (2014) The influence of gold nanoparticles on the electroactivity of nickel tetrasulfonated phthalocyanine. J Porphyrins Phthalocyanines 18:642–651. https://doi.org/10.1142/S1088424614500333

    Article  CAS  Google Scholar 

  22. Berríos C, Marco JF, Gutiérrez C, Ureta-Zañartu MS (2009) Electro-oxidation of chlorophenols at glassy carbon electrodes modified with polyNi (II) complexes. Electrochim Acta 54:6417–6425. https://doi.org/10.1016/j.electacta.2009.06.017

    Article  CAS  Google Scholar 

  23. Bako YFR, Tapsoba I, Pontié M, Chelaghmia LM (2018) Direct electrooxidation of 3-methyl-4-nitrophenol (MNP) at carbon fiber microelectrode (CFME). Int J Electrochem Sci 13:8056–8071. https://doi.org/10.20964/2018.08.35

    Article  CAS  Google Scholar 

  24. Hou C, Luo Q, He Y, Zhang H (2021) Potentiostatic electrodeposition of gold nanoparticles: variation of electrocatalytic activity toward four targets. J Appl Electrochem 51:1721–1730. https://doi.org/10.1007/s10800-021-01604-7

    Article  CAS  Google Scholar 

  25. Mbokou FS, Pontié M, Razafimandimby B, Bouchara JP, Njanja E, Tonle KI (2016) Evaluation of the degradation of acetaminophen by the filamentous fungus scedosporium dehoogii using carbon-based modified electrodes. Anal Bioanal Chem 408:5895–5903. https://doi.org/10.1007/s00216-016-9704-8

    Article  CAS  PubMed  Google Scholar 

  26. Mocak J, Bond AM, Mitchel S, Scollary G (1997) A statistical overview of procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques. Pure Appl Chem 69:297–302. https://doi.org/10.1351/pac199769020297

    Article  CAS  Google Scholar 

  27. Analytical Methods Committee (1987) Recommendations for the definition, estimation and the use of the detection limit. Analyst 112:199–204

    Article  Google Scholar 

  28. Hadjmohammadi MR, Ehsani M, Kamel K, Biparva P (2012) Application of experimental design for extraction of BHA and BHT from edible vegetable oil and their determination using HPLC. Q Sci Connect 1:7. https://doi.org/10.5339/connect.2012.7

    Article  Google Scholar 

  29. Mbokou FS, Bako YFR, Ilboudo O, Karanga Y, Njanja E, Pontie M, Tapsoba I, Tonle KI, Djouaka R (2022) Sensitive carbon fiber microelectrode for the quantification of diuron in quality control of a commercialized formulation. Int J Anal Chem Article ID. https://doi.org/10.1155/2022/9994639

    Article  Google Scholar 

  30. Sbaï M, Essis-Tome H, Gombert U, Breton T, Pontie M (2007) Electrochemical stripping analysis of ethyl-parathion (MPT) using carbon fiber microelectrodes (CFME) modified with combinations of poly-NiTSPc and Nafion® films. Sens Actuators B 124:368–375. https://doi.org/10.1016/j.snb.2006.12.051

    Article  CAS  Google Scholar 

  31. Pontie M, Thouand G, De Nardi F, Tapsoba I, Lherbette S (2011) Antipassivating electrochemical process of glassy carbon electrode (GCE) dedicated to the oxidation of nitrophenol compounds. Electroanalysis 23:1579–1584. https://doi.org/10.1002/elan.201100082

    Article  CAS  Google Scholar 

  32. Ferrari G-M, Foster WC, Kelly JP, Brownson CA, Banks EC (2018) Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors 8:3–10. https://doi.org/10.3390/bios8020053

    Article  CAS  Google Scholar 

  33. Hallam PM, Banks CE (2011) A facile approach for quantifying the density of defects (edge plane sites) of carbon nanomaterials and related structures. Phys Chem Chem Phys 13:1210–1213. https://doi.org/10.1039/C0CP01562H

    Article  CAS  PubMed  Google Scholar 

  34. Bruce PG, Lisowska-Oleksiak A, Los P, Vincent CA (1994) Electrochemical impedance spectroscopy at an ultramicroelectrode. J Electroanal Chem 367:219–283

    Article  Google Scholar 

  35. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interf Electrochem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  36. Ngouoko JJK, Tajeu KY, Temgoua RCT, Doungmo G, Doench I, Tamo AK, Kamgaing T, Osorio-Madrazo A, Tonle KI (2022) Hydroxyapatite/L-Lysine composite coating as glassy carbon electrode modifier for the analysis and detection of Nile Blue A. Materials 15:4262. https://doi.org/10.3390/ma15124262

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shetti NP, Nayak DS, Malode SJ, Kulkarni RM (2018)  Fabrication of MWCNTs and Ru doped TiO2 nanoparticles composite carbon sensor for biomedical application. ECS J Solid State Sci Technol. https://doi.org/10.1149/2.0101807jss

    Article  Google Scholar 

  38. Tajeu KY, Ymele E, Jiokeng ZSL, Tonle KI (2019) Electrochemical sensor for caffeine based on a glassy carbon electrode modified with an attapulgite/nafion film. Electroanalysis 31:350–356. https://doi.org/10.1002/elan.201800621

    Article  CAS  Google Scholar 

  39. Yue X, Song W, Zhu W, Wang J, Wang Y (2015) In situ surface electrochemical co-reduction route towards controllable construction of AuNPs/ERGO electrochemical sensing platform for simultaneous determination of BHA and TBHQ. Electrochim Acta 138:126–139. https://doi.org/10.1016/j.electacta.2015.09.162

    Article  CAS  Google Scholar 

  40. Roushani M, Sarabaegi M (2014) Electrochemical detection of butylatedhydroxyanisole based on glassy carbon electrode modified by iridium oxide nanoparticles. J Electroanal Chem 717–718:147–152. https://doi.org/10.1016/j.jelechem.2014.01.013

    Article  CAS  Google Scholar 

  41. Zhao TGA, Wang ZS, Sun J (2016) Hierarchical triple-shelled porous hollow zinc oxide spheres wrapped in graphene oxide as efficient sensor material for simultaneous electrochemical determination of synthetic antioxidants in vegetable oil. Sens Actuators 235:707–716. https://doi.org/10.1016/j.snb.2016.05.137

    Article  CAS  Google Scholar 

  42. Ziyatdinova GK, Ziganshina ER, Os’kina KS, Budnikov HC (2014) Voltammetric determination of sterically hindered phenols in surfactant—based self—organized media. J Anal Chem 69:750–757. https://doi.org/10.1134/S1061934814080140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Romain Mallet (Angers University, SCIAM, France) for recording SEM/AFM images and EDX spectra. We also thank the ISP (International Science Program) for its financial support to the African Network of Electroanalytical Chemists (ANEC). We are grateful to iMERMAID (Innovative solutions for Mediterranean Ecosystem Remediation via Monitoring and decontamination from Chemical Pollution) project funded by European Union for the financial support of the postdoctoral position of Dr. Serge MBOKOU at the Angers University.

Author information

Authors and Affiliations

Authors

Contributions

HHTB, EN, SFM, RTM, and IKT conducted the Lab work. HTB and SFM wrote the main manuscript. YFRB and MP did some experiments and characterizations. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to Serge Foukmeniok Mbokou.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1453.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tchoumi Bougna, H.H., Njanja, E., Foukmeniok Mbokou, S. et al. Electrochemical determination of butylhydroxyanisole (BHA) using a carbon fiber microelectrode modified by electrodeposition of gold nanoparticles and poly-NiTSPc film. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02093-0

Keywords

Navigation