Skip to main content
Log in

Nonenzymatic electrochemical sensing of hydrogen peroxide based on a polyaniline-MnO2 nanofiber-modified glassy carbon electrode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We report the synthesis of polyaniline-manganese dioxide (PANI-MnO2) nanofibers and their applications as nonenzymatic electrochemical sensors for the determination of hydrogen peroxide (H2O2). The PANI-MnO2 nanofibers were synthesized via a one-step mixing process from the as-prepared PANI nanofiber aqueous dispersion and the aqueous solution of KMnO4. The morphology and chemical composition of the synthesized PANI-MnO2 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy, and X-ray diffraction. A facile electrochemical hydrogen peroxide sensor based on a PANI-MnO2-modified glassy carbon electrode (PANI-MnO2/GCE) was fabricated by a drop-casting method, and its electrochemical behavior was investigated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and amperometry. The results clearly exhibited good electrocatalytic activity of the PANI-MnO2/GCE toward H2O2 reduction in pH 7.4 phosphate buffer solution (PBS). The nonenzymatic H2O2 sensor displayed a wide linear range (5–50 μM and 0.05–10 mM), low detection limit (0.8 μM at S/N = 3), high sensitivity (403.3 μA mM−1 cm−2), and negligible interference from ascorbic acid, uric acid, l-cysteine, and glucose at an applied detection potential of −0.4 V (vs. Ag/AgCl).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen W, Cai S, Ren Q-Q, Wen W, Zhao Y-D (2012) Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst 137:49–58

    Article  CAS  Google Scholar 

  2. Klassen NV, Marchington D, McGowan HCE (1994) H2O2 determination by the I3 method and by KMnO4 titration. Anal Chem 66:2921–2925

    Article  CAS  Google Scholar 

  3. Hanaoka S, Lin J-M, Yamada M (2001) Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Anal Chim Acta 426:57–64

    Article  CAS  Google Scholar 

  4. Li Y, Townshend A (1998) Evaluation of the adsorptive immobilisation of horseradish peroxidase on PTFE tubing in flow systems for hydrogen peroxide determination using fluorescence. Anal Chim Acta 359:149–156

    Article  CAS  Google Scholar 

  5. Matsubara C, Kawamoto N, Takamura K (1992) Oxo[5, 10, 15, 20-tetra(4-pyridyl)porphyrinato]titanium(IV): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781

    Article  CAS  Google Scholar 

  6. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438

    Article  CAS  Google Scholar 

  7. Wang Y, Ma X, Wen Y, Xing Y, Zhang Z, Yang H (2010) Direct electrochemistry and bioelectrocatalysis of horseradish peroxidase based on gold nano-seeds dotted TiO2 nanocomposite. Biosens Bioelectron 25:2442–2446

    Article  CAS  Google Scholar 

  8. Huang K-J, Niu D-J, Liu X, Wu Z-W, Fan Y, Chang Y-F, Wu Y-Y (2011) Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor. Electrochim Acta 56:2947–2953

    Article  CAS  Google Scholar 

  9. Xiang C, Zou Y, Sun L-X, Xu F (2008) Direct electron transfer of cytochrome c and its biosensor based on gold nanoparticles/room temperature ionic liquid/carbon nanotubes composite film. Electrochem Commun 10:38–41

    Article  CAS  Google Scholar 

  10. Guo H-L, Liu D-Y, Yu X-D, Xia X-H (2009) Direct electrochemistry and electrocatalysis of hemoglobin on nanostructured gold colloid-silk fibroin modified glassy carbon electrode. Sensors Actuators B 139:598–603

    Article  CAS  Google Scholar 

  11. Mu Y, Jia D, He Y, Miao Y, Wu H-L (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952

    Article  CAS  Google Scholar 

  12. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594:24–31

    Article  CAS  Google Scholar 

  13. Wang B, Luo L, Ding Y, Zhao D, Zhang Q (2012) Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor. Colloids Surf B Biointerfaces 97:51–56

    Article  CAS  Google Scholar 

  14. Liu Z, Zhao B, Shi Y, Guo C, Yang H, Li Z (2010) Novel nonenzymatic hydrogen peroxide sensor based on iron oxide-silver hybrid submicrospheres. Talanta 81:1650–1654

    Article  CAS  Google Scholar 

  15. Butwong N, Zhou L, Ng-eontae W, Burakham R, Moore E, Srijaranai S, Luong JHT, Glennon JD (2014) A sensitive nonenzymatic hydrogen peroxide sensor using cadmium oxide nanoparticles/multiwall carbon nanotube modified glassy carbon electrode. J Electroanal Chem 717–718:41–46

    Article  Google Scholar 

  16. Wang Q, Zheng J (2010) Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim Acta 169:361–365

    Article  CAS  Google Scholar 

  17. Xiao X, Song Y, Liu H, Xie M, Hou H, Li Wang, Li Z (2013) Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing. J Mater Sci 48:4843–4850

    Article  CAS  Google Scholar 

  18. Luo L, Li F, Zhu L, Zhang Z, Ding Y, Deng D (2012) Non-enzymatic hydrogen peroxide sensor based on MnO2-ordered mesoporous carbon composite modified electrode. Electrochim Acta 77:179–183

    Article  CAS  Google Scholar 

  19. Wang A-J, Zhang P-P, Li Y-F, Feng J-J, Dong W-J, Liu X-Y (2011) Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods. Microchim Acta 175:31–37

    Article  CAS  Google Scholar 

  20. Xu B, Ye M-L, Yu Y-X, Zhang W-D (2010) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes. Anal Chim Acta 674:20–26

    Article  CAS  Google Scholar 

  21. Li Y, Zhang J, Zhu H, Yang F, Yang X (2010) Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing. Electrochim Acta 55:5123–5128

    Article  CAS  Google Scholar 

  22. Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S (2006) A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film. Anal Chim Acta 557:78–84

    Article  CAS  Google Scholar 

  23. Yao S, Yuan S, Xu J, Wang Y, Luo J, Hu S (2006) A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite. Appl Clay Sci 33:35–42

    Article  CAS  Google Scholar 

  24. Hocevar S, Ogorevc B, Schachl K, Kalcher K (2004) Glucose microbiosensor based on MnO2 and glucose oxidase modified carbon fiber microelectrode. Electroanalysis 16:1711–1716

    Article  CAS  Google Scholar 

  25. Han Y, Zheng J, Dong S (2013) A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites. Electrochim Acta 90:35–43

    Article  CAS  Google Scholar 

  26. Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641

    Article  CAS  Google Scholar 

  27. Wang L, Deng M, Ding G, Chen S, Xu F (2013) Manganese dioxide based ternary nanocomposite for catalytic reduction and nonenzymatic sensing of hydrogen peroxide. Electrochim Acta 114:416–423

    Article  CAS  Google Scholar 

  28. Do S-H, Batchelor B, Lee H-K, Kong S-H (2009) Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism. Chemosphere 75:8–12

    Article  CAS  Google Scholar 

  29. Yu G, Hu L, Vosgueritchian M, Wang H (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  30. Babu KJ, Zahoor A, Nahm KS, Ramachandran R, Rajan MAJ, Gnana kumar G (2014) The influences of shape and structure of MnO2 nanomaterials over the non-enzymatic sensing ability of hydrogen peroxide. J Nanopart Res 16:2250

    Article  Google Scholar 

  31. Toupin M, Brousse T, Bélanger D (2002) Influence of microstucture on the charge storage properties of chemically synthesized manganese dioxide. Chem Mater 14:3946–3952

    Article  CAS  Google Scholar 

  32. Bakardjieva S, Bezdička P, Grygar T, Vorm P (2000) Reductive dissolution of microparticulate manganese oxides. J Solid State Electrochem 4:306–313

    Article  CAS  Google Scholar 

  33. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  CAS  Google Scholar 

  34. Huang W, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 82:2385–2400

    Article  CAS  Google Scholar 

  35. Šljukić B, Stojković I, Cvijetićanin N, Ćirić-Marjanović G (2011) Hydrogen peroxide sensing at MnO2/carbonized nanostructured polyaniline electrode. Russ J Phys Chem A 85:2406–2409

    Article  Google Scholar 

  36. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibers. J Am Chem Soc 126:851–855

    Article  CAS  Google Scholar 

  37. Jiang H, Ma J, Li C (2012) Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J Mater Chem 22:16939–16942

    Article  CAS  Google Scholar 

  38. Anu PMU, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295

    Article  Google Scholar 

  39. Dong X, Shen W, Gu J, Xiong L, Zhu Y, Li H, Shi J (2006) MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. J Phys Chem B 110:6015–6019

    Article  CAS  Google Scholar 

  40. Xiao F, Li Y, Zan X, Liao K, Xu R, Duan H (2012) Growth of metal-metal oxide nanostructures on freestanding graphene paper for flexible biosensors. Adv Funct Mater 22:2487–2494

    Article  CAS  Google Scholar 

  41. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  CAS  Google Scholar 

  42. Luo J, Chen Y, Ma Q, Liu R, Liu X (2013) Layer-by-layer self-assembled hybrid multilayer films based on poly(sodium 4-styrenesulfonate) stabilized graphene with polyaniline and their electrochemical sensing properties. RSC Adv 3:17866–17873

    Article  CAS  Google Scholar 

  43. Cheng F, Su Y, Liang J, Tao Z, Chen J (2010) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22:898–905

    Article  CAS  Google Scholar 

  44. Mao L, Zhang D, Sotomura T, Nakatsu K, Koshiba N, Ohsaka T (2003) Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts. Electrochim Acta 48:1015–1021

    Article  CAS  Google Scholar 

  45. Gong K, Yu P, Su L, Xiong S, Mao L (2007) Polymer-assisted synthesis of manganese dioxide/carbon nanotube nanocomposite with excellent electrocatalytic activity toward reduction of oxygen. J Phys Chem C 111:1882–1887

    Article  CAS  Google Scholar 

  46. Roche I, Scott K (2010) Effect of pH and temperature on carbon-supported manganese oxide oxygen reduction electrocatalysts. J Electroanal Chem 638:280–286

    Article  CAS  Google Scholar 

  47. Liu Z, Han Q, Ni P, Liu Z, Dong X, Wang Y, Li Z (2014) Enhanced hydrogen peroxide sensing by incorporating manganese dioxide nanowire with silver nanoparticles. Electrochem Commun 38:110–113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hun-Gi Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Hong, HG. Nonenzymatic electrochemical sensing of hydrogen peroxide based on a polyaniline-MnO2 nanofiber-modified glassy carbon electrode. J Appl Electrochem 45, 1153–1162 (2015). https://doi.org/10.1007/s10800-015-0881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0881-5

Keywords

Navigation