Skip to main content
Log in

Phyto-mediated CuO–Sb2O3 nanocomposite supported on Ni foam as a proficient dual-functional supercapacitor electrode and overall water splitting electrocatalyst

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Owing to the higher global energy needs through cleaner sources the present study manifests a modified and ecofriendly method for the fabrication of CuO–Sb2O3-based electrode for electrochemical experiments. The aqueous solution derived from the Amaranthus viridis L. plant, belonging to the Amaranthaceae family, was employed as a reducing agent in order to impact the structure of CuO–Sb2O3 nanocomposites. The improved material exhibited a regular crystal size of 40.04 nm that is in excellent accordance with the findings obtained from scanning electron microscopy (SEM). Fourier-transform infrared spectroscopy, FE-SEM, and energy-dispersive spectroscopy were utilized in order to examine and assess the synthesized nanocomposite. Based on the Tauc plot, the optical bandgap energy was found to be 2.7 eV. The bioorganic framework-derived CuO–Sb2O3 electrode was then evaluated for energy generation and storage applications, with cyclic voltammetry revealing a capacitance of 344.4 F/g at 2 mV/s. Hydrogen evolution reaction and oxygen evolution reactions demonstrated the electrocatalytic potential of CuO–Sb2O3 as a water splitting electrocatalyst, with the highest efficiency of the electrode up to 18 h for HER.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Islam A, Teo SH, Awual MR, Taufiq-Yap YH (2020) Assessment of clean H2 energy production from water using novel silicon photocatalyst. J Clean Prod 244:1–12. https://doi.org/10.1016/j.jclepro.2019.118805

    Article  CAS  Google Scholar 

  2. Yu C et al (2020) Recent advances in design of flexible electrodes for miniaturized supercapacitors. Small Methods 4(6):1–31. https://doi.org/10.1002/smtd.201900824

    Article  CAS  Google Scholar 

  3. Endo N, Goshome K, Tetsuhiko M, Segawa Y, Shimoda E, Nozu T (2021) Thermal management and power saving operations for improved energy efficiency within a renewable hydrogen energy system utilizing metal hydride hydrogen storage. Int J Hydrogen Energy 46(1):262–271. https://doi.org/10.1016/j.ijhydene.2020.10.002

    Article  CAS  Google Scholar 

  4. Zhou S et al (2020) Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Appl Catal B 266:118513. https://doi.org/10.1016/j.apcatb.2019.118513

    Article  CAS  Google Scholar 

  5. Makimizu Y et al (2020) Effects of low oxygen annealing on the photoelectrochemical water splitting properties of α-Fe2O3. J Mater Chem A 8(3):1315–1325. https://doi.org/10.1039/c9ta10358a

    Article  CAS  Google Scholar 

  6. Marlinda AR, Yusoff N, Sagadevan S, Johan MR (2020) Recent developments in reduced graphene oxide nanocomposites for photoelectrochemical water-splitting applications. Int J Hydrogen Energy 45(21):11976–11994. https://doi.org/10.1016/j.ijhydene.2020.02.096

    Article  CAS  Google Scholar 

  7. Ali A, Long F, Shen PK (2023) Innovative strategies for overall water splitting using nanostructured transition metal electrocatalysts. Electrochem Energy Rev 6(1):1–30. https://doi.org/10.1007/s41918-022-00136-8

    Article  CAS  Google Scholar 

  8. Chen MT et al (2022) Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 605:888–896. https://doi.org/10.1016/j.jcis.2021.07.101

    Article  CAS  PubMed  Google Scholar 

  9. Siavash Moakhar R et al (2018) AuPd bimetallic nanoparticle decorated TiO2 rutile nanorod arrays for enhanced photoelectrochemical water splitting. J Appl Electrochem 48:995–1007. https://doi.org/10.1007/s10800-018-1231-1

    Article  CAS  Google Scholar 

  10. Kment et al (2020) FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Prog Mater Sci 110:100632. https://doi.org/10.1016/j.pmatsci.2019.100632

    Article  CAS  Google Scholar 

  11. Bakhtiargonbadi F, Esfahani H, Moakhar RS, Dabir F (2020) Fabrication of novel electrospun Al and Cu doped ZnO thin films and evaluation of photoelectrical and sunlight-driven photoelectrochemical properties. Mater Chem Phys 252:123270. https://doi.org/10.1016/j.matchemphys.2020.123270

    Article  CAS  Google Scholar 

  12. Feng J et al (2020) Non-oxide semiconductors for artificial photosynthesis: progress on photoelectrochemical water splitting and carbon dioxide reduction. Nano Today 30:1830. https://doi.org/10.1016/j.nantod.2019.100830

    Article  CAS  Google Scholar 

  13. Pan L et al (2020) Cu2O photocathodes with band-tail states assisted hole transport for standalone solar water splitting. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-019-13987-5

    Article  CAS  Google Scholar 

  14. Wang Y et al (2019) Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat Energy 4(9):746–760. https://doi.org/10.1038/s41560-019-0456-5

    Article  CAS  Google Scholar 

  15. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sustain Energy Rev 57:850–866. https://doi.org/10.1016/j.rser.2015.12.112

    Article  CAS  Google Scholar 

  16. Shi L, Yin Y, Zhang LC, Wang S, Sillanpää M, Sun H (2019) Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review. Appl Catal B 248:405–422. https://doi.org/10.1016/j.apcatb.2019.02.044

    Article  CAS  Google Scholar 

  17. Jia J et al (2016) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Publ Gr 7:1–6. https://doi.org/10.1038/ncomms13237

    Article  CAS  Google Scholar 

  18. Wang S, Liu G, Wang L (2019) Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem Rev 119(8):5192–5247. https://doi.org/10.1021/acs.chemrev.8b00584

    Article  CAS  PubMed  Google Scholar 

  19. Fajrina N, Tahir M (2019) A critical review in strategies to improve photocatalytic water splitting towards hydrogen production. Int J Hydrogen Energy 44(2):540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200

    Article  CAS  Google Scholar 

  20. Kim JH, Hansora D, Sharma P, Jang JW, Lee JS (2019) Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge. Chem Soc Rev 48(7):1908–1971. https://doi.org/10.1039/c8cs00699g

    Article  CAS  PubMed  Google Scholar 

  21. Babu B, Koutavarapu R, Shim J, Yoo K (2020) SnO2 quantum dots decorated NiFe2O4 nanoplates: 0D/2D heterojunction for enhanced visible-light-driven photocatalysis. Mater Sci Semicond Process 107:104834. https://doi.org/10.1016/j.mssp.2019.104834

    Article  CAS  Google Scholar 

  22. Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater Sci Eng C 33(1):91–98. https://doi.org/10.1016/j.msec.2012.08.011

    Article  CAS  Google Scholar 

  23. Munawar T et al (2020) Synthesis of novel heterostructured ZnO-CdO-CuO nanocomposite: characterization and enhanced sunlight driven photocatalytic activity. Mater Chem Phys 249:122983. https://doi.org/10.1016/j.matchemphys.2020.122983

    Article  CAS  Google Scholar 

  24. Yang Y, Xu D, Wu Q, Diao P (2016) Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Nat Publ Gr. https://doi.org/10.1038/srep35158

    Article  Google Scholar 

  25. Sun L, Zhuang Y, Yuan Y, Zhan W, Wang X, Han X (2019) Nitrogen-doped carbon-coated CuO-In2O3 p–n heterojunction for remarkable photocatalytic hydrogen evolution. Adv Energy Mater 839:1–11. https://doi.org/10.1002/aenm.201902839

    Article  CAS  Google Scholar 

  26. Yendrapati Taraka Prabhu VNR (2019) Facile hydrothermal synthesis of CuO@ZnO heterojunction nanostructures for enhanced photocatalytic hydrogen evolution. New J. Chem. 43:6794–6805. https://doi.org/10.1039/C8NJ06056H

    Article  Google Scholar 

  27. Jadhav U, Hocheng H (2015) Hydrometallurgical recovery of metals from large printed circuit board pieces. Nat Publ Gr 101:1–10. https://doi.org/10.1038/srep14574

    Article  CAS  Google Scholar 

  28. Xing H, E LE (2019) Exposing photocorrosion mechanism and control strategies of CuO photocathode. Inorg Chem Front 6:2488. https://doi.org/10.1039/C9QI00780F

    Article  CAS  Google Scholar 

  29. Li J et al (2019) Copper oxide nanowires for efficient photoelectrochemical water splitting Jianming. Appl Catal B 240:1. https://doi.org/10.1016/j.apcatb.2018.08.070

    Article  CAS  Google Scholar 

  30. Kim KH, Kanamaru Y, Abe Y, Kawamura M, Kiba T (2020) Morphological evolution of bilayer-structured copper oxide from ribbon-like-structured copper acetate hydroxide with varying growth temperatures. Mater Lett 265:127424. https://doi.org/10.1016/j.matlet.2020.127424

    Article  CAS  Google Scholar 

  31. Kampmann J (2020) How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale 12(14):7766

    Article  CAS  PubMed  Google Scholar 

  32. Liu C et al (2018) CuO/ZnO heterojunction nanoarrays for enhanced photoelectrochemical water oxidation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.11.054

    Article  Google Scholar 

  33. Li J, Yang M, Wei J, Zhou Z (2012) Preparation and electrochemical performances of doughnut-like Ni(OH) 2-Co(OH)2 composites as pseudocapacitor materials. Nanoscale 4(15):4498–4503. https://doi.org/10.1039/c2nr30936j

    Article  CAS  PubMed  Google Scholar 

  34. Silva FLG, Veiga AG, Carvalho NMF (2021) Manganese oxides treated with organic compounds as catalysts for water oxidation reaction. Int J Hydrogen Energy 46(21):11677–11687. https://doi.org/10.1016/j.ijhydene.2021.01.039

    Article  CAS  Google Scholar 

  35. Shao Q, Wang P, Huang X (2019) Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Adv Funct Mater 29(3):1–23. https://doi.org/10.1002/adfm.201806419

    Article  CAS  Google Scholar 

  36. Guo M, Zhou L, Li Y, Zheng Q, Xie F, Lin D (2019) Unique nanosheet-nanowire structured CoMnFe layered triple hydroxide arrays as self-supporting electrodes for a high-efficiency oxygen evolution reaction. J Mater Chem A 7(21):13130–13141. https://doi.org/10.1039/c9ta01531k

    Article  CAS  Google Scholar 

  37. Liang J, Liu Q, Li T, Luo Y, Lu S (2021) Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis Jie. Green Chem 23:2834–2867. https://doi.org/10.1039/d0gc03994b

    Article  CAS  Google Scholar 

  38. Sibhatu AK, Weldegebrieal GK, Sagadevan S, Tran NN, Hessel V (2022) Photocatalytic activity of CuO nanoparticles for organic and inorganic pollutants removal in wastewater remediation. Chemosphere 300:134623. https://doi.org/10.1016/j.chemosphere.2022.134623

    Article  CAS  PubMed  Google Scholar 

  39. Mishra SR, Ahmaruzzaman M (2022) CuO and CuO-based nanocomposites: synthesis and applications in environment and energy. Sustain Mater Technol 33:e00463. https://doi.org/10.1016/j.susmat.2022.e00463

    Article  CAS  Google Scholar 

  40. Siddiqi KS, Husen A (2020) Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater Res 24(1):1–15. https://doi.org/10.1186/s40824-020-00188-1

    Article  CAS  Google Scholar 

  41. Jain A, Wadhawan S, Mehta SK (2021) Environmental nanotechnology, monitoring & management biogenic synthesis of non-toxic iron oxide NPs via Syzygium aromaticum for the removal of methylene blue. Environ Nanotechnol Monit Manag 16:1464. https://doi.org/10.1016/j.enmm.2021.100464

    Article  CAS  Google Scholar 

  42. Hussain A et al (2019) Biogenesis of ZnO nanoparticles using: Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Adv 9(27):15357–15369. https://doi.org/10.1039/c9ra01659g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gervas C et al (2019) Synthesis of off-stoichiometric CoS nanoplates from a molecular precursor for efficient H2/O2 evolution and supercapacitance. ChemElectroChem 6(9):2560–2569. https://doi.org/10.1002/celc.201900413

    Article  CAS  Google Scholar 

  44. Azhar S et al (2021) Phyto-inspired Cu/Bi oxide-based nanocomposites: synthesis, characterization, and energy relevant investigation. RSC Adv 11(49):30510–30519. https://doi.org/10.1039/d1ra05066d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y et al (2020) Achieving highly selective electrocatalytic CO2 reduction by tuning CuO-Sb2O3 nanocomposites. ACS Sustain Chem Eng 8(12):4948–4954. https://doi.org/10.1021/acssuschemeng.0c00800

    Article  CAS  Google Scholar 

  46. Wang G et al (2021) Green synthesis of copper nanoparticles using green coffee bean and their applications for efficient reduction of organic dyes. J Environ Chem Eng 9(4):105331. https://doi.org/10.1016/j.jece.2021.105331

    Article  CAS  Google Scholar 

  47. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas A, Malik MA (2020) Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage properties. RSC Adv 10(14):8115–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan T et al (2018) Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate. RSC Adv 8(9):4695–4702. https://doi.org/10.1039/c7ra13629c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ghozali M et al (2020) PLA/metal oxide biocomposites for antimicrobial packaging application. Polym Technol Mater 59(12):1332–1342. https://doi.org/10.1080/25740881.2020.1738475

    Article  CAS  Google Scholar 

  50. Shanmugavani A, Selvan RK (2016) Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors. Electrochim Acta 188:852–862. https://doi.org/10.1016/j.electacta.2015.12.077

    Article  CAS  Google Scholar 

  51. Al-gubury HY, Fairooz NY, Mohammed QY (2016) Study physical properties of composite ZnO- Sb2O3 using liquid Impregnation Study physical properties of composite ZnO-Sb2O3 using liquid Impregnation Method. J Chem Pharm Sci

  52. Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas A, Malik MA (2020) Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage properties. RSC Adv 10(14):8115–8129. https://doi.org/10.1039/c9ra09477f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parthiban E, Kalaivasan N, Sudarsan S (2020) Dual responsive (pH and magnetic) nanocomposites based on Fe3O4@polyaniline/itaconic acid: synthesis, characterization and removal of toxic hexavalent chromium from Tannery wastewater. J Inorg Organomet Polym Mater 30(11):4677–4690. https://doi.org/10.1007/s10904-020-01602-w

    Article  CAS  Google Scholar 

  54. Jaffri SB, Ahmad KS (2020) Biomimetic detoxifier Prunus cerasifera Ehrh. silver nanoparticles: innate green bullets for morbific pathogens and persistent pollutants. Environ Sci Pollut Res 27(9):9669–9685. https://doi.org/10.1007/s11356-020-07626-6

    Article  CAS  Google Scholar 

  55. Ealias AM, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  56. Gul AR, Shaheen F, Rafique R, Bal J, Waseem S, Park TJ (2021) Grass-mediated biogenic synthesis of silver nanoparticles and their drug delivery evaluation: a biocompatible anti-cancer therapy. Chem Eng J 407:127202. https://doi.org/10.1016/j.cej.2020.127202

    Article  CAS  Google Scholar 

  57. Bryngelsson H, Eskhult J, Nyholm L, Herranen M, Alm O (2007) Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries. Chem Mater 19(6):1170–1180

    Article  CAS  Google Scholar 

  58. Dubal DP, Gund GS, Lokhande CD, Holze R (2013) CuO cauliflowers for supercapacitor application: novel potentiodynamic deposition. Mater Res Bull 48(2):923–928. https://doi.org/10.1016/j.materresbull.2012.11.081

    Article  CAS  Google Scholar 

  59. Bu IYY, Huang R (2016) Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.08.136

    Article  Google Scholar 

  60. Murphin Kumar PS, Kyaw HH, Myint MT, Al-Haj L, Al-Muhtaseb AA, Al-Abri M, Thanigaivel V, Ponnusamy VK (2020) Green route synthesis of nanoporous copper oxide for efficient supercapacitor and capacitive deionization performances. Int J Energy Res 44(13):10682–10694

    Article  CAS  Google Scholar 

  61. Ren L et al (2020) Fabrication of an antimony doped tin oxide-graphene nanocomposite for highly effective capacitive deionization of saline water. RSC Adv 10(64):39130–39136. https://doi.org/10.1039/d0ra08339a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Department of Environmental Sciences, Lab E-21, Fatima Jinnah Women University, Rawalpindi, and higher education commission of Pakistan. This work was supported by the Researchers Supporting Project Number (RSPD2023R667), King Saud University, Riyadh, Saudi Arabia

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [S.Az.], [K.S.A] and [R.K.G].The first draft of the manuscript was written by [S.Az] and [S.An]. Authors [W.L], [I.A.] and [A.E.M] supervised and contributed in analysis. All authors commented on previous versions of the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Khuram Shahzad Ahmad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, S., Ahmad, K.S., Andleeb, S. et al. Phyto-mediated CuO–Sb2O3 nanocomposite supported on Ni foam as a proficient dual-functional supercapacitor electrode and overall water splitting electrocatalyst. J Appl Electrochem 54, 963–976 (2024). https://doi.org/10.1007/s10800-023-02025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-023-02025-4

Keywords

Navigation