Skip to main content
Log in

Numerical study of heterogeneous porosity in gas diffusion layers of high-temperature proton-exchange membrane fuel cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The heterogeneously porous gas diffusion layers (GDLs) in high-temperature proton-exchange membrane fuel cells (HT-PEMFCs) have not yet been comprehensively investigated. In this work, homogeneous and heterogeneous porosity models are established, and the effects of porosity on the electrical conductivity, oxygen distribution, diffusion flux, ohmic resistance, ohmic polarization, and cell performance of HT-PEMFCs are discussed. The results indicate that increasing the average degree of porosity can improve the oxygen concentration and the uniformity index of oxygen distribution in the catalytic layer. When the average porosity increases from 45 to 65%, the uniformity index increases from 80.21 to 91.93%. Porosity is inversely proportional to electrical conductivity and directly proportional to ohmic resistance. Discussions of the porosity heterogeneity reveal that the average porosity is the main factor affecting the cell performance. The optimal porosity of the GDL falls between 40% and 45%, and the gradient of porosity is small.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Liu P, Fan S, Liu Y, Han X, Jin Z (2021) Three-dimensional modeling of anode-supported planar SOFC with corrugated electrolyte. J Electrochem Soc 168:104501. https://doi.org/10.1149/1945-7111/ac2974

    Article  CAS  Google Scholar 

  2. Fan S, Ye J, Yao Q, Wang D, Yang L, Jin Z (2021) Effect of flow modes on operation characteristics of three-dimensional non-isothermal solid oxide fuel cell stack. Int J Energy Res. https://doi.org/10.1002/er.7210

    Article  PubMed  Google Scholar 

  3. Vazifeshenas Y, Sedighi K, Shakeri M (2015) Numerical investigation of a novel compound flow-field for PEMFC performance improvement. Int J Hydrogen Energy 40:15032–15039. https://doi.org/10.1016/j.ijhydene.2015.08.077

    Article  CAS  Google Scholar 

  4. Shusheng X, Qiujie S, Baosheng G, Encong Z, Zhankuan W (2020) Research and development of on-board hydrogen-producing fuel cell vehicles. Int J Hydrogen Energy 45:17844–17857. https://doi.org/10.1016/j.ijhydene.2020.04.236

    Article  CAS  Google Scholar 

  5. Xing L, Mamlouk M, Scott K (2013) A two dimensional agglomerate model for a proton exchange membrane fuel cell. Energy 61:196–210. https://doi.org/10.1016/j.energy.2013.08.026

    Article  CAS  Google Scholar 

  6. Xia L (2021) Numerical study of triple-phase boundary length in high-temperature proton exchange membrane fuel cell. Short Communi 2021:1–13. https://doi.org/10.1002/er.7223

    Article  CAS  Google Scholar 

  7. Zamel N, Li X (2008) Transient analysis of carbon monoxide poisoning and oxygen bleeding in a PEM fuel cell anode catalyst layer. Int J Hydrogen Energy 33:1335–1344. https://doi.org/10.1016/j.ijhydene.2007.12.060

    Article  CAS  Google Scholar 

  8. Chu HS, Wang CP, Liao WC, Yan WM (2006) Transient behavior of CO poisoning of the anode catalyst layer of a PEM fuel cell. J Power Sources. https://doi.org/10.1016/j.jpowsour.2005.12.045

    Article  Google Scholar 

  9. Wang CP, Chu H, Sen, (2006) Transient analysis of multicomponent transport with carbon monoxide poisoning effect of a PEM fuel cell. J Power Sources. https://doi.org/10.1016/j.jpowsour.2005.12.004

    Article  Google Scholar 

  10. Heidary H, Jafar Kermani M, Khajeh-Hosseini-Dalasm N (2016) Performance analysis of PEM fuel cells cathode catalyst layer at various operating conditions. Int J Hydrogen Energy 41:22274–22284. https://doi.org/10.1016/j.ijhydene.2016.08.178

    Article  CAS  Google Scholar 

  11. Daş E, Alkan Gürsel S, Bayrakçeken Yurtcan A (2020) Pt-alloy decorated graphene as an efficient electrocatalyst for PEM fuel cell reactions. J Supercrit Fluids. https://doi.org/10.1016/j.supflu.2020.104962

    Article  Google Scholar 

  12. Bie K, Fu P, Liu Y, Muhammad A (2020) Comparative study on the performance of different carbon fuels in a molten carbonate direct carbon fuel cell with a novel anode structure. J Power Sources 460:228101. https://doi.org/10.1016/j.jpowsour.2020.228101

    Article  CAS  Google Scholar 

  13. Kang S, Zhou B, Jiang M (2017) Bubble behaviors in direct methanol fuel cell anode with parallel design. Int J Hydrogen Energy 42:20201–20215. https://doi.org/10.1016/j.ijhydene.2017.06.149

    Article  CAS  Google Scholar 

  14. Tiss F, Chouikh R, Guizani A (2014) A numerical investigation of reactant transport in a PEM fuel cell with partially blocked gas channels. Energy Convers Manag 80:32–38. https://doi.org/10.1016/j.enconman.2013.12.063

    Article  CAS  Google Scholar 

  15. Perng SW, Wu HW, Wang RH (2014) Effect of modified flow field on non-isothermal transport characteristics and cell performance of a PEMFC. Energy Convers Manag 80:87–96. https://doi.org/10.1016/j.enconman.2013.12.044

    Article  CAS  Google Scholar 

  16. Bao Y, Gan Y (2020) Roughness effects of gas diffusion layers on droplet dynamics in PEMFC flow channels. Int J Hydrogen Energy 45:17869–17881. https://doi.org/10.1016/j.ijhydene.2020.04.228

    Article  CAS  Google Scholar 

  17. Athanasaki G, Wang Q, Shi X, Chauhan N, Vimala V, Cindrella L et al (2021) Design and development of gas diffusion layers with pore forming agent for proton exchange membrane fuel cells at various relative humidity conditions. Int J Hydrogen Energy 46:6835–6844. https://doi.org/10.1016/j.ijhydene.2020.11.187

    Article  CAS  Google Scholar 

  18. Xia L, Ni M, He Q, Xu Q, Cheng C (2021) Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity. Appl Energy 300:117357. https://doi.org/10.1016/j.apenergy.2021.117357

    Article  Google Scholar 

  19. El-Kharouf A, Mason TJ, Brett DJL, Pollet BG (2012) Ex-situ characterisation of gas diffusion layers for proton exchange membrane fuel cells. J Power Sources 218:393–404. https://doi.org/10.1016/j.jpowsour.2012.06.099

    Article  CAS  Google Scholar 

  20. Xing L, Wang Y, Das PK, Scott K, Shi W (2018) Homogenization of current density of PEM fuel cells by in-plane graded distributions of platinum loading and GDL porosity. Chem Eng Sci 192:699–713. https://doi.org/10.1016/j.ces.2018.08.029

    Article  CAS  Google Scholar 

  21. Nabovati A, Hinebaugh J, Bazylak A, Amon CH (2014) Effect of porosity heterogeneity on the permeability and tortuosity of gas diffusion layers in polymer electrolyte membrane fuel cells. J Power Sources 248:83–90. https://doi.org/10.1016/j.jpowsour.2013.09.061

    Article  CAS  Google Scholar 

  22. Chu H, Sen, Yeh C, Chen F (2003) Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell. J Power Sources 123:1–9. https://doi.org/10.1016/S0378-7753(02)00605-5

    Article  CAS  Google Scholar 

  23. Zhang Y, Verma A, Pitchumani R (2016) Optimum design of polymer electrolyte membrane fuel cell with graded porosity gas diffusion layer. Int J Hydrogen Energy 41:8412–8426. https://doi.org/10.1016/j.ijhydene.2016.02.077

    Article  CAS  Google Scholar 

  24. Yang P, Wang Y, Yang Y, Yuan L, Jin Z (2021) Effects of gas diffusion layer porosity distribution on proton exchange membrane fuel cell. Energy Technol. https://doi.org/10.1002/ente.202001012

    Article  Google Scholar 

  25. Sun X, Xie X, Wu S, Liu Z, Zhou X, Jiao K (2021) Investigation of metal foam porosity and wettability on fuel cell water management by electrochemical impedance spectroscopy. Int J Green Energy. https://doi.org/10.1080/15435075.2021.1880908

    Article  Google Scholar 

  26. Jaber TJ, Jaralla R, Sulaiman MA, Bourouni K (2017) Numerical study on high temperaturePEM fuel cell (HTPEMFC). J Power Sources 2017:26–28

    Google Scholar 

  27. Jha V, Hariharan R, Krishnamurthy B (2020) A 3 dimensional numerical model to study the effect of GDL porosity on high temperature PEM fuel cells. Int J Heat Mass Transf 161:120311. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120311

    Article  CAS  Google Scholar 

  28. Coker AK (2007) Physical properties of liquids and gases. Ludwig’s Appl Process Des Chem Petrochem Plants. https://doi.org/10.1016/b978-075067766-0/50010-5

    Article  Google Scholar 

  29. Li S, Sundén B (2017) Three-dimensional modeling and investigation of high temperature proton exchange membrane fuel cells with metal foams as flow distributor. Int J Hydrogen Energy 42:27323–27333. https://doi.org/10.1016/j.ijhydene.2017.09.014

    Article  CAS  Google Scholar 

  30. Ubong EU, Shi Z, Wang X (2009) Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell. J Electrochem Soc 156:B1276. https://doi.org/10.1149/1.3203309

    Article  CAS  Google Scholar 

  31. Osanloo B, Mohammadi-Ahmar A, Solati A (2016) A numerical analysis on the effect of different architectures of membrane, CL and GDL layers on the power and reactant transportation in the square tubular PEMFC. Int J Hydrogen Energy 41:10844–10853. https://doi.org/10.1016/j.ijhydene.2016.04.228

    Article  CAS  Google Scholar 

  32. Sun P (2011) Modeling studies and efficient numerical methods for proton exchange membrane fuel cell. Comput Methods Appl Mech Eng 200:3324–3340. https://doi.org/10.1016/j.cma.2011.08.007

    Article  Google Scholar 

  33. Weltens H, Bressler H, Terres F, Neumaier H, Rammoser D (1993) Optimisation of catalytic converter gas flow distribution by CFD prediction. SAE Tech Pap. https://doi.org/10.4271/930780

    Article  Google Scholar 

  34. Bhattacharya D, Mukhopadhyay J, Biswas N, Basu RN, Das PK (2018) Performance evaluation of different bipolar plate designs of 3D planar anode-supported SOFCs. Int J Heat Mass Transf 123:382–396. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.096

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support for this project from the National Natural Science Foundation of China (No. 21676257). The authors declared that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zunlong Jin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Liu, P., Fan, S. et al. Numerical study of heterogeneous porosity in gas diffusion layers of high-temperature proton-exchange membrane fuel cells. J Appl Electrochem 52, 1733–1746 (2022). https://doi.org/10.1007/s10800-022-01746-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01746-2

Keywords

Navigation