Skip to main content
Log in

Study on the efficacy of sterilization in tap water by electrocatalytic technique

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Tap water contains some heavy metals and bio-organic substances with variety of concentration and these cannot be treated using regular physicochemical processes. So the present study, aims at evaluating the effectiveness of the sterilization using electrocatalytic technique with Escherichia coli (E. coli) as the observed index. The operational parameters such as anode material, voltage, inflow method, and electrode number are studied to understand the variation of pH, conductivity, E. coli, and residual chlorine of tap water. The outcome reveals that the maximum sterilization efficiency of E. coli is obtained using the titanium dioxide electrode, followed by ruthenium dioxide and graphite. A disinfection efficiency of 98% can be easily achieved. Also, the appropriate increase in the operating voltage can increase the sterilization efficiency and decrease the treatment time. The sterilization efficiency of the E. coli can reach 100% under the continuous inflow of tap water and the voltage of 60 V for 1 min, which meets the conventional standard of drinking water (6 CFU/100ml). The estimated operating cost of treatment of 1 ton of tap water is NTD 1.7.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Van Leeuwen FXR (2000) Safe drinking water: the toxicologist’s approach. Food Chem Toxicol. https://doi.org/10.1016/s0278-6915(99)00140-4

    Article  PubMed  Google Scholar 

  2. Kerwick MI, Reddy SM, Chamberlain AHL, Holt DM (2005) Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim Acta 50:5270–5277. https://doi.org/10.1016/j.electacta.2005.02.074

    Article  CAS  Google Scholar 

  3. Pina AS, Batalha ÍL, Fernandes CSM et al (2014) Exploring the potential of magnetic antimicrobial agents for water disinfection. Water Res 66:160–168. https://doi.org/10.1016/j.watres.2014.08.024

    Article  CAS  PubMed  Google Scholar 

  4. Gao G, Lange D, Hilpert K et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909. https://doi.org/10.1016/j.biomaterials.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  5. Helbling DE, VanBriesen JM (2007) Free chlorine demand and cell survival of microbial suspensions. Water Res 41:4424–4434. https://doi.org/10.1016/j.watres.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  6. Ochiai T, Masuko K, Tago S et al (2013) Synergistic water-treatment reactors using a TiO2-modified Ti-mesh filter. Water (Switzerland) 5:1101–1115. https://doi.org/10.3390/w5031101

    Article  CAS  Google Scholar 

  7. Würtele MA, Kolbe T, Lipsz M et al (2011) Application of GaN-based ultraviolet-C light emitting diodes - UV LEDs - for water disinfection. Water Res 45:1481–1489. https://doi.org/10.1016/j.watres.2010.11.015

    Article  CAS  PubMed  Google Scholar 

  8. Low D, Hamood A, Reid T et al (2011) Attachment of selenium to a reverse osmosis membrane to inhibit biofilm formation of S. aureus. J Memb Sci 378:171–178. https://doi.org/10.1016/j.memsci.2011.04.041

    Article  CAS  Google Scholar 

  9. Velasco-Bedran H (2009) An airlift continuous biorreactor for high-rate treatment of domestic sewage. N Biotechnol 25:S197–S198. https://doi.org/10.1016/j.nbt.2009.06.128

    Article  Google Scholar 

  10. Cui YH, Li XY, Chen G (2009) Electrochemical degradation of bisphenol A on different anodes. Water Res 43:1968–1976. https://doi.org/10.1016/j.watres.2009.01.026

    Article  CAS  PubMed  Google Scholar 

  11. Song S, Fan J, He Z et al (2010) Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochim Acta 55:3606–3613. https://doi.org/10.1016/j.electacta.2010.01.101

    Article  CAS  Google Scholar 

  12. Chang JH, Chang Chien SW, Di Dong C et al (2019) The coinage refractory wastewater treated by electrocatalytic-membrane process (ECMP) integrated with chemical- or electro-coagulation techniques. Process Saf Environ Prot 125:182–188. https://doi.org/10.1016/j.psep.2019.03.015

    Article  CAS  Google Scholar 

  13. Yu F, Wang Y, Ma H, Zhou M (2020) Hydrothermal synthesis of FeS2 as a highly efficient heterogeneous electro-Fenton catalyst to degrade diclofenac via molecular oxygen effects for Fe(II)/Fe(III) cycle. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117022

    Article  Google Scholar 

  14. Yu F, Chen Y, Pan Y et al (2020) A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.116695

    Article  Google Scholar 

  15. Lissens G, Pieters J, Verhaege M et al (2003) Electrochemical degradation of surfactants by intermediates of water discharge at carbon-based electrodes. Electrochim Acta 48:1655–1663. https://doi.org/10.1016/S0013-4686(03)00084-7

    Article  CAS  Google Scholar 

  16. Radha KV, Sridevi V, Kalaivani K (2009) Electrochemical oxidation for the treatment of textile industry wastewater. Bioresour Technol 100:987–990. https://doi.org/10.1016/j.biortech.2008.06.048

    Article  CAS  PubMed  Google Scholar 

  17. De Oliveira GR, Fernandes NS, de Melo JV et al (2011) Electrocatalytic properties of Ti-supported Pt for decolorizing and removing dye from synthetic textile wastewaters. Chem Eng J 168:208–214. https://doi.org/10.1016/j.cej.2010.12.070

    Article  CAS  Google Scholar 

  18. Su J, Lu N, Zhao J et al (2012) Nano-cubic structured titanium nitride particle films as cathodes for the effective electrocatalytic debromination of BDE-47. J Hazard Mater 231–232:105–113. https://doi.org/10.1016/j.jhazmat.2012.06.044

    Article  CAS  PubMed  Google Scholar 

  19. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl Catal B Environ 87:105–145. https://doi.org/10.1016/j.apcatb.2008.09.017

    Article  CAS  Google Scholar 

  20. Tung CH, Shen SY, Chang JH et al (2013) Treatment of real printing wastewater with an electrocatalytic process. Sep Purif Technol 117:131–136. https://doi.org/10.1016/j.seppur.2013.07.028

    Article  CAS  Google Scholar 

  21. Chen X, Chen G, Gao F, Yue PL (2003) High-performance Ti/BDD electrodes for pollutant oxidation. Environ Sci Technol 37:5021–5026. https://doi.org/10.1021/es026443f

    Article  CAS  PubMed  Google Scholar 

  22. Ferro S, De Battisti A, Duo I et al (2000) Chlorine evolution at highly boron-doped diamond electrodes. J Electrochem Soc 147:2614. https://doi.org/10.1149/1.1393578

    Article  CAS  Google Scholar 

  23. Patermarakis G, Fountoukidis E (1990) Disinfection of water by electrochemical treatment. Water Res 24:1491–1496. https://doi.org/10.1016/0043-1354(90)90083-I

    Article  CAS  Google Scholar 

  24. Oturan MA (2000) Ecologically effective water treatment technique using electrochemically generated hydroxyl radicals for in situ destruction of organic pollutants: Application to herbicide 2,4-D. J Appl Electrochem 30:475–482. https://doi.org/10.1023/A:1003994428571

    Article  CAS  Google Scholar 

  25. Johnson SK, Houk LL, Feng J et al (1999) Electrochemical incineration of 4-chlorophenol and the identification of products and intermediates by mass spectrometry. Environ Sci Technol 33:2638–2644. https://doi.org/10.1021/es981045r

    Article  CAS  Google Scholar 

  26. Tung CH, Chang JH, Hsieh YH et al (2014) Comparison of hydroxyl radical yields between photo- and electro-catalyzed water treatments. J Taiwan Inst Chem Eng 45:1649–1654. https://doi.org/10.1016/j.jtice.2013.11.011

    Article  CAS  Google Scholar 

  27. Saran M, Beck-Speier I, Fellerhoff B, Bauer G (1999) Phagocytic killing of microorganisms by radical processes: Consequences of the reaction of hydroxyl radicals with chloride yielding chlorine atoms. Free Radic Biol Med 26:482–490. https://doi.org/10.1016/S0891-5849(98)00187-7

    Article  CAS  PubMed  Google Scholar 

  28. Oren Y, Tobias H, Soffer A (1983) Removal of bacteria from water by electroadsorption on porous carbon electrodes. J Electroanal Chem 156:347–351. https://doi.org/10.1016/S0022-0728(83)80685-8

    Article  Google Scholar 

  29. Al-Hamaiedeh HD (2009) Effect of electrolyte components on electrochemical generation and disinfection efficiency of active chlorine. Desalin Water Treat 12:369–374. https://doi.org/10.5004/dwt.2009.962

    Article  CAS  Google Scholar 

  30. Stoner GE, Cahen GL, Sachyani M, Gileadi E (1982) The mechanism of low frequency a.c. electrochemical disinfection. Bioelectrochemistry Bioenerg 9:229–243. https://doi.org/10.1016/0302-4598(82)80013-5

    Article  CAS  Google Scholar 

  31. Cui X, Quicksall AN, Blake AB, Talley JW (2013) Electrochemical disinfection of Escherichia coli in the presence and absence of primary sludge particulates. Water Res 47:4383–4390. https://doi.org/10.1016/j.watres.2013.04.039

    Article  CAS  PubMed  Google Scholar 

  32. Jeong J, Kim JY, Cho M et al (2007) Inactivation of Escherichia coli in the electrochemical disinfection process using a Pt anode. Chemosphere 67:652–659. https://doi.org/10.1016/j.chemosphere.2006.11.035

    Article  CAS  PubMed  Google Scholar 

  33. Chang JH, Ellis AV, Hsieh YH et al (2009) Electrocatalytic characterization and dye degradation of Nano-TiO2 electrode films fabricated by CVD. Sci Total Environ 407:5914–5920. https://doi.org/10.1016/j.scitotenv.2009.07.041

    Article  CAS  PubMed  Google Scholar 

  34. Cai L, Ju F, Zhang T (2014) Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 98:3317–3326. https://doi.org/10.1007/s00253-013-5402-z

    Article  CAS  PubMed  Google Scholar 

  35. Zearley TL, Summers RS (2012) Removal of trace organic micropollutants by drinking water biological filters. Environ Sci Technol 46:9412–9419. https://doi.org/10.1021/es301428e

    Article  CAS  PubMed  Google Scholar 

  36. Othmani A, Kesraoui A, Akrout H et al (2020) Coupling anodic oxidation, biosorption and alternating current as alternative for wastewater purification. Chemosphere 249:126480. https://doi.org/10.1016/j.chemosphere.2020.126480

    Article  CAS  PubMed  Google Scholar 

  37. Farhat A, Keller J, Tait S, Radjenovic J (2017) Assessment of the impact of chloride on the formation of chlorinated by-products in the presence and absence of electrochemically activated sulfate. Chem Eng J 330:1265–1271. https://doi.org/10.1016/j.cej.2017.08.033

    Article  CAS  Google Scholar 

  38. Deborde M, von Gunten U (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: a critical review. Water Res 42:13–51. https://doi.org/10.1016/j.watres.2007.07.025

    Article  CAS  PubMed  Google Scholar 

  39. Benabbou AK, Derriche Z, Felix C et al (2007) Photocatalytic inactivation of Escherischia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B Environ 76:257–263. https://doi.org/10.1016/j.apcatb.2007.05.026

    Article  CAS  Google Scholar 

  40. Bogdan J, Zarzyńska J, Pławińska-Czarnak J (2015) Comparison of infectious agents susceptibility to photocatalytic effects of nanosized titanium and zinc oxides: a practical approach. Nanoscale Res Lett. https://doi.org/10.1186/s11671-015-1023-z

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chang J-H, Wang Y-L, Dong C-D, Shen S-Y (2020) Electrocatalytic degradation of azo dye by vanadium-doped TiO2 nanocatalyst. Catalysts 10:482. https://doi.org/10.3390/catal10050482

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanraj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, JH., Shen, SY., Dong, CD. et al. Study on the efficacy of sterilization in tap water by electrocatalytic technique. J Appl Electrochem 51, 539–550 (2021). https://doi.org/10.1007/s10800-020-01513-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01513-1

Keywords

Navigation