Skip to main content
Log in

Spectroscopic characterization and photoactivity of SiO x -based films electrochemically grown on Cu surfaces

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposited SiO x electrodes were shown to be photoactive and exhibit n- and p-type effects for electrodes placed in aqueous and organic solutions, respectively. As seen by Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron (XPS) spectroscopy, the mechanism of the electrodeposition included reactions with the used electrolyte as well as with traces of water as sources of oxygen and hydrogen. The lowest band gap energy (E g) of the films of approximately 1.6 eV was observed for the film electrodeposited at −2.5 V in comparison to 1.9 eV for the films obtained at −2.25 and −2.75 V. The depth profiles of Si and O in the films were registered by XPS, secondary ion mass spectrometry (SIMS), and glow discharge optical emission spectroscopy (GD-OES), which showed that Si and O were relatively uniformly distributed across the entire layer of the film. The n-type photoactivity was associated with the evolution of oxygen from the aqueous solution, and the p-type was attributed to the reductive deterioration of the amorphous SiO x deposit and simultaneous photodecomposition of the electrolyte.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rao GM, Elwell D, Feigelson RS (1982) Characterization of electrodeposited silicon on graphite. Sol Energy Mater 7:15–21

    Article  CAS  Google Scholar 

  2. Pudasaini PR, Ayon AA (2012) High efficiency nanotextured silicon solar cells. Opt Commun 285:4211–4214

    Article  CAS  Google Scholar 

  3. Yoo J, Yu G, Yi J (2011) Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE). Sol Energy Mater Sol Cells 95:2–6

    Article  CAS  Google Scholar 

  4. Bugnon G, Parascandolo G, Söderström T, Cuony P, Despeisse M, Hänni S, Holovský J, Meillaud F, Ballif C (2012) A new view of microcrystalline silicon: the role of plasma processing in achieving a dense and stable absorber material for photovoltaic applications. Adv Funct Mater 22:3665–3671

    Article  CAS  Google Scholar 

  5. Hamashita D, Miyajima S, Konagai M (2012) Preparation of Al-doped hydrogenated nanocrystalline cubic silicon carbide by VHF-PECVD for heterojunction emitter of n-type crystalline silicon solar cells. Sol Energy Mater Sol Cells 107:46–50

    Article  CAS  Google Scholar 

  6. Noda M (1982) Photo-assisted electrolysis of water by Si photoelectrodes. Int J Hydrog Energy 7:311–320

    Article  CAS  Google Scholar 

  7. Szklarczyk M, Bockris JOM (1983) Photoelectrocatalysis on silicon in solar light. Appl Phys Lett 42:1035–1036

    Article  CAS  Google Scholar 

  8. Gissler W, McEvoy AJ (1984) Photoelectrochemical effects on p-silicon of ruthenium dioxide thin films. Sol Energy Mater 10:309–316

    Article  CAS  Google Scholar 

  9. Kenney MJ, Gong M, Li Y, Wu JZ, Feng J, Lanza M, Dai H (2013) High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 342:836–840

    Article  CAS  Google Scholar 

  10. Hull R (1999) Properties of crystalline silicon. INSPEC, Stevenage

    Google Scholar 

  11. Dearnaley G, Morgan DV, Stoneham AM (1970) A model for filament growth and switching in amorphous oxide films. J Non-Cryst Solids 4:593–612

    Article  CAS  Google Scholar 

  12. Priestley EB, Call PJ (1980) Deposition and characterization of thin SiO x films. Thin Solid Films 69:39–52

    Article  CAS  Google Scholar 

  13. Krywko-Cendrowska A, Strawski M, Szklarczyk M (2013) Low temperature electrodeposition of SiO x films photoactive in water solution. Electrochim Acta 108:112–117

    Article  CAS  Google Scholar 

  14. Thøgersen A, Selj JH, Marstein ES (2012) Oxidation effects on graded porous silicon anti-reflection coatings. J Electrochem Soc 159:D276–D281

    Article  Google Scholar 

  15. Weinberg ZA, Rubloff GW (1978) The Physics of SiO2 and its interfaces. Pergamon, New York

    Google Scholar 

  16. Tomozeiu N (2011) Silicon oxide (SiO x , 0 < x < 2): a challenging material for optoelectronics. In: Predeep P (ed) Optoelectronics-materials and techniques. Intech, pp 55–99. doi: 10.5772/20156

  17. Barranco A, Yubero F, Espinos JP, Groening P, Gonzalez-Elipe AR (2005) Electronic state characterization of SiO x thin films prepared by evaporation. J Appl Phys 97:113714

    Article  Google Scholar 

  18. Walder C, Kellermann M, Wendler E, Rensberg J, von Maydell K, Agert C (2015) Comparison of silicon oxide and silicon carbide absorber materials in silicon thin-film solar cells. EPJ Photovolt 6:65302

    Article  Google Scholar 

  19. Haga K, Yamamoto K, Kumano M (1990) Optical properties of plasma-deposited silicon-oxygen alloy films. Jpn J Appl Phys 29:636–639

    Article  CAS  Google Scholar 

  20. Fujikake S, Ohta H, Asano A, Ichikawa Y, Sakai H (1992) High quality a-SiO: H films and their application to a-Si solar cells. Mater Res Soc Symp Proc 258:875

    Article  CAS  Google Scholar 

  21. Pavesi L, Dal Negro L, Mazzoleni C, Franzo G, Priolo F (2000) Optical gain in silicon nanocrystals. Nature 480:440–444

    Article  Google Scholar 

  22. Nayfeh M, Rao S, Barry N, Therrien J, Belomoin G, Smith A, Chaieb S (2002) Observation of laser oscillation in aggregates of ultrasmall silicon nanoparticles. Appl Phys Lett 80:121–123

    Article  CAS  Google Scholar 

  23. Nalini RP, Khomenkova L, Debieu O, Cardin J, Dufour C, Carrada M, Gourbilleau F (2012) SiO x /SiNy multilayers for photovoltaic and photonic applications. Nanoscale Res Lett 7:124

    Article  Google Scholar 

  24. Gourbilleau F, Dufour C, Madelon R, Rizk R (2007) Effects of Si nanocluster size and carrier Er interaction distance on the efficiency of energy transfer. J Lumin 126:581–589

    Article  CAS  Google Scholar 

  25. Nikas V, Gallis S, Huang M, Kaloyeros AE, Nguyen APD, Stesmans A, Afanas’ev VV (2014) The origin of white luminescence from silicon oxycarbide thin films. Appl Phys Lett 104:061906

    Article  Google Scholar 

  26. Wang M, Xia Y, Wang X, Xiao Y, Liu R, Wu Q, Qiu B, Metwalli E, Xia S, Yao Y, Chen G, Liu Y, Liu Z, Meng Q, Yang Z, Sun LD, Yan CH, Müller-Buschbaum P, Pan J, Cheng YJ (2016) Silicon oxycarbide/carbon nanohybrids with tiny silicon oxycarbide particles embedded in free carbon matrix based on photoactive dental methacrylates. ACS Appl Mater Interfaces 8:13982–13992

    Article  CAS  Google Scholar 

  27. Gore C (1854) Electro-deposition of aluminium and silicium. Philos Mag 7:227–228

    Google Scholar 

  28. Nicholson JP (2005) Electrodeposition of silicon from nonaqueous solvents. J Elecrochem Soc 152:C795–C802

    Article  CAS  Google Scholar 

  29. Bechelany M, Elias J, Brodard P, Michler J, Philippe L (2012) Electrodeposition of amorphous silicon in non-oxygenated organic solvent. Thin Solid Films 520:1895–1901

    Article  CAS  Google Scholar 

  30. Krywko-Cendrowska A, Marot L, Strawski M, Steiner R, Meyer E (2016) Electrodeposition and characterization of SiO x films photoactive in organic solution. J Electrochem Soc 163:D100–D106

    Article  CAS  Google Scholar 

  31. Paracchino A, Brauer JC, Moser JE, Thimsen E, Graetzel M (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C 116:7341–7350

    Article  CAS  Google Scholar 

  32. Useful Information and Facts about the Practice of Sputtering, SPECS Surface Nano Analysis GmbH. http://www.specs.de/cms/upload/PDFs/IQE11-35/sputter-info.pdf

  33. Pellison-Schecker A, Hug HJ, Patscheider J (2012) Charge referencing issues in XPS of insulators as evidenced in the case of Al-Si-N thin films. Surf Interace Anal 44:29–36

    Article  Google Scholar 

  34. Doniach S, Sunjic M (1970) Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J Phys C 3:285–291

    Article  CAS  Google Scholar 

  35. Shirley DA (1972) High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys Rev B 5:4709–4714

    Article  Google Scholar 

  36. Hesse R, Chasse T, Szargan R (1999) Peak shape analysis of core level photoelectron spectra using UNIFIT for WINDOWS. Fresen J Anal Chem 365:48–54

    Article  CAS  Google Scholar 

  37. Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8:129–137

    Article  CAS  Google Scholar 

  38. Tougaard S (1998) Accuracy of the non-destructive surface nanostructure quantification technique based on analysis of the XPS or AES peak shape. Surf Interface Anal 26:249–269

    Article  CAS  Google Scholar 

  39. Izutsu K (2002) Electrochemistry in nonaqueous solutions. Wiley, ISBN: 3-527-60065-5

  40. Agrawal AK, Austin AE (1981) Electrodeposition of silicon from solutions of silicon halides in aprotic solvents. J Electrochem Soc 128:2292–2296

    Article  CAS  Google Scholar 

  41. Socrates G (2004) Infrared and Raman characteristic group frequencies, 3rd edn. Wiley, Chichester

    Google Scholar 

  42. Brodsky MH, Cardona M, Cuomo JJ (1977) Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering. Phys Rev B 16:3556–3571

    Article  CAS  Google Scholar 

  43. Deschaines T, Hodkiewicz J, Henson P (2009) Characterization of amorphous and microcrystalline silicon using Raman spectroscopy. Technical Note 51735, Thermo Fischer Scientific, Madison, WI, USA. https://tools.thermofisher.com/content/sfs/brochures/D16998~.pdf

  44. Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Miner 79:269–273

    CAS  Google Scholar 

  45. Katharria YS, Kumar S, Choudhary RJ, Prakash R, Singh F, Lalla NP, Phase DM, Kanjilal D (2008) Pulsed laser deposition of SiC thin films at medium substrate temperatures. Thin Solid Films 516:6083–6087

    Article  CAS  Google Scholar 

  46. Bennet CJ, Sillars D, Osamura Y, Kaiser RI (2005) Infrared spectroscopic identification of the methylsilylidyne (SiCH3, X2A”) and the silenyl (H2CSiH, X2A’) radicals in methane-silane matrices. Chem Phys Lett 404:327–335

    Article  Google Scholar 

  47. Kroll U, Meier J, Shah A, Mikhailov S, Weber J (1996) Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution. J Appl Phys 80:4971–4975

    Article  CAS  Google Scholar 

  48. Texeira F, Berjoan R, Peraudeau G, Perarnaru D (2005) Solar preparation of SiO x (x ≈ 1) nanopowders from silicon vaporisation on a ZrO2 pellet. XPS and photoluminescence characterization. Sol Energy 78:763–771

    Article  Google Scholar 

  49. Wang PW, Bater S, Zhang LP, Ascherl M, Craig JH Jr (1995) XPS investigation of electron beam effects on a trimethylsilane dosed Si(100) surface. Appl Surf Sci 90:413–417

    Article  CAS  Google Scholar 

  50. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Physical Electronic Division, Eden Prairie

    Google Scholar 

  51. Contarini S, Howlett SP, Rizzo C, De Angelis BA (1991) XPS study on the dispersion of carbon additives in silicon carbide powders. Appl Surf Sci 51:177–183

    Article  CAS  Google Scholar 

  52. Smith KL, Black KM (1984) Characterization of the treated surfaces of silicon alloyed pyrolytic carbon and SiC. J Vac Sci Technol A 2:744–747

    Article  CAS  Google Scholar 

  53. Beverskog B, Puigdomenech I (1997) Revised Pourbaix diagrams for copper at 25 to 300°C. J Electrochem Soc 144:3476–3483

    Article  CAS  Google Scholar 

  54. Alfantazi AM, Ahmed TM, Tromans D (2009) Corrosion behavior of copper alloys in chloride media. Mater Des 30:2425–2430

    Article  CAS  Google Scholar 

  55. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. NACE International, Houston

    Google Scholar 

  56. Keil P, Lützenkirchen-Hecht D, Frahm R (2007) Investigation of room temperature oxidation of Cu in air by Yoneda-XAFS. AIP Conf Proc 882:490–492

    Article  CAS  Google Scholar 

  57. Vainshtein JS, Yeltsina OS, Terukov EI, Sreseli OM (2013) Photocurrent and photovoltage spectroscopy of amorphous silicon nanoclusters. Physica E 49:72–75

    Article  CAS  Google Scholar 

  58. Kurokawa Y, Yamada S, Konagai M (2012) Numerical approach to the performance of silicon quantum dots superlattice solar cells taking into account the quantum effect. Jpn J Appl Phys 51:10NE09

  59. Gallis S, Nikas V, Huang M, Eisenbraun E, Kaloyeros AE (2007) Comparative study of the effects of thermal treatment on the optical properties of hydrogenated amorphous silicon-oxycarbide. J Appl Phys 102:024302

    Article  Google Scholar 

  60. Narisawa M, Kawai T, Watase S, Matsukawa K, Dohmaru T, Okamura K, Iwase A (2012) Long-lived photoluminescence in amorphous Si–O–C(–H) ceramics derived from polysiloxanes. J Am Ceram Soc 95:3935–3940

    Article  CAS  Google Scholar 

  61. Shevchuk SL, Maishev YP (2005) Silicon oxycarbide thin films deposited from viniltrimethoxysilane ion beams. Thin Solid Films 492:114–117

    Article  CAS  Google Scholar 

  62. Nakano Y, Saeki S, Morikawa T (2009) Optical bandgap widening of P-type Cu2O films by nitrogen doping. Appl Phys Lett 94:022111

    Article  Google Scholar 

  63. Kumar V, Masudy-Panah S, Tan CC, Wong TKS, Chi DZ, Dalapati GK (2013) Copper oxide based low cost thin film solar cells. In: 2013 IEEE 5th international nanoelectronics conference (INEC), pp 443–445. doi: 10.1109/INEC.2013.6466072

  64. Zhang X, Kostecki R, Richardson TJ, Pugh JK, Ross PN Jr (2001) Electrochemical and infrared studies of the reduction of organic carbonates. J Electrochem Soc 148:A1341–A1345

    Article  CAS  Google Scholar 

  65. Baxter I, Cother LD, Dupuy C, Lickiss PD, White AJP, Williams DJ (1997) Hydrogen bonding to silanols. In: ECTOC-3 (Electronic Conference on Trends in Organometallic Chemistry). http://www.ch.ic.ac.uk/ectoc/ectoc-3/

  66. Smirnov V, Lambertz A, Finger F (2015) Electronic and structural properties of N-Type microcrystalline silicon oxide (Mc-Sio x :H) films for applications in thin film silicon solar cells. Energy Procedia 84:71–77

    Article  CAS  Google Scholar 

  67. Walls JM, Smith R (1994) Surface science techniques. Elsevier, Oxford

    Google Scholar 

  68. Cumpson PJ, Seah MP (1997) Elastic scattering corrections in AES and XPS. II. Estimating attenuation lengths and conditions required for their valid use in overlayer/substrate experiments. Surf Interface Anal 25:430–446

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Foundation of Polish Science MPD Program cofinanced by the EU European Regional Development Fund, Swiss Federal Office of Energy, and Swiss Federal Office for Education and Science for their financial support. This work was also supported by the Swiss National Foundation (SNF), Swiss Nanoscience Institute (SNI), and National Centre of Competence in Research on Nanoscale Science. We would also like to express our thanks to Prof. Wolfgang Meier for making the ATR FTIR spectrometer available to us, Mr. Daniel Mathys for the SEM imaging, and Mr. Damian Frey for the GD-OES measurements presented in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Krywko-Cendrowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krywko-Cendrowska, A., Marot, L., Philippe, L. et al. Spectroscopic characterization and photoactivity of SiO x -based films electrochemically grown on Cu surfaces. J Appl Electrochem 47, 917–930 (2017). https://doi.org/10.1007/s10800-017-1089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1089-7

Keywords

Navigation