Skip to main content
Log in

Structure, Morphology and Optical Properties of TiO2 Films Formed by Anodizing in a Mixed Solution of Citric Acid and Sulfamic Acid

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

TiO2 films of 50-180 nm thickness were formed at room temperature by anodization of titanium metal in a mixture of citric acid and sulfamic acid in the potential range of 5-30 V. The films so obtained were characterized for their crystal structure, surface morphology, chemical composition and optical properties. Grazing incidence x-ray diffraction and micro-laser Raman spectroscopy measurements of the anodic films confirmed the formation of brookite phase of TiO2 at anodizing potentials of 15, 20, 25 and 30 V and amorphous structure at 5 and 10 V. Field emission scanning electron microscopy revealed non-porous microstructure of the films. Spectroscopic ellipsometry measurements evaluated the band gap of TiO2 at around 3.3 eV, whereas the refractive index of the films was found to be in the range of 2-2.35, in the visible range of spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Yoshida, M. Tanaka, and K. Nagashima, Preparation of a Dense TiO2 Thin Film by Oxidizing Metallic Titanium, Thin Solid Films, 2013, 537, p 23–27

    Article  Google Scholar 

  2. Z. Zhao, B.K. Tay, and G. Yu, Room-Temperature Deposition of Amorphous Titanium Dioxide Thin Film with High Refractive Index by a Filtered Cathodic Vacuum Arc Technique, Appl. Opt., 2004, 43, p 1281–1285

    Article  Google Scholar 

  3. K. Ali, S.A. Khan, and M.Z.M. Jafri, Effect of Double Layer (SiO2/TiO2) Anti-reflective Coating on Silicon Solar Cells, Int. J. Electrochem. Sci., 2014, 9, p 7865–7874

    Google Scholar 

  4. M. Kitui, M.M. Mwamburi, F. Gaitho, and C.M. Maghana, Optical Properties of TiO2 Based Multilayer Thin Films: Application to Optical Filters, Int. J. Thin Films. Sci. Technol., 2015, 4, p 17–21

    Google Scholar 

  5. A. Ghadimi-Mahani, E. Farsad, A. Goodarzi, S. Tahamtan, S.P. Abbasi, and M.S. Zabihi, Improvement and Characterization of High-Reflective and Anti-reflective Nanostructured Mirrors by Ion Beam Assisted Deposition for 944 nm High Power Diode Laser, Opt. Commun., 2015, 355, p 94–102

    Article  Google Scholar 

  6. M. Ozdemir, M. Kurt, L. Ozyuzer, and G. Aygun, Comparison of Photocatalytic Properties of TiO2 Thin Films and Fibers, Eur. Phys. J. Appl. Phys., 2016, 75, p 30401

    Article  Google Scholar 

  7. D. Mardare, N. Iftimie, and D. Luca, TiO2 Thin Films as Sensing Gas Materials, J. Non Cryst. Solids, 2008, 354, p 4396–4400

    Article  Google Scholar 

  8. S. Mozaffari, M.R. Nateghi, and M.B. Zarandi, An Overview of the Challenges in the Commercialization of Dye Sensitized Solar Cells, Renew. Sustain. Energy Rev., 2017, 71, p 675–686

    Article  Google Scholar 

  9. S.-Y. Lee and S.-J. Park, TiO2 Photocatalyst for Water Treatment Applications, J. Ind. Eng. Chem., 2013, 19, p 1761–1769

    Article  Google Scholar 

  10. M. Kumar, M. Kumar, and D. Kumar, The Deposition of Nanocrystalline TiO2 Thin Film on Silicon Using Sol-Gel Technique and Its Characterization, Microelectron. Eng., 2010, 87, p 447–450

    Article  Google Scholar 

  11. T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, and S.L. Suib, Photocatalytic Water Splitting—The Untamed Dream: A Review of Recent Advances, Molecules, 2016, 21, p 900

    Article  Google Scholar 

  12. D. Pjevic, T. Marinkovic, J. Savic, N. Bundaleski, M. Obradovic, M. Milosavljevic, and M. Kulik, Influence of Substrate Temperature and Annealing on Structural and Optical Properties of TiO2 Films Deposited by Reactive e-Beam Evaporation, Thin Solid Films, 2015, 591, p 224–229

    Article  Google Scholar 

  13. S. Nezar, N. Saoula, S. Sali, M. Faiz, M. Mekki, N.A. Laoufi, and N. Tabet, Properties of TiO2 Thin Films Deposited by RF Reactive Magnetron Sputtering on Biased Substrates, Appl. Surf. Sci., 2017, 395, p 172–179

    Article  Google Scholar 

  14. J.-C. Orlianges, A. Crunteanu, A. Pothier, T. Merle-Mejean, P. Blondy, and C. Champeaux, Titanium Dioxide Thin Films Deposited by Pulsed Laser Deposition and Integration in Radio Frequency Devices: Study of Structure, Optical and Dielectric Properties, Appl. Surf. Sci., 2012, 263, p 111–114

    Article  Google Scholar 

  15. A.J. Henegar, A.J. Cook, P. Dang, and T. Gougousi, Native Oxide Transport and Removal During Atomic Layer Deposition of TiO2 Films on GaAs(100) Surfaces, ACS Appl. Mater. Interfaces., 2016, 8, p 1667–1675

    Article  Google Scholar 

  16. Y. Leprince-Wang, D. Souche, K. Yu-Zhang, S. Fission, G. Vuye, and J. Rivory, Relations Between the Optical Properties and the Microstructure of TiO2 Thin Films Prepared by Ion-Assisted Deposition, Thin Solid Films, 2000, 359, p 171–176

    Article  Google Scholar 

  17. Y. Leprince-Wang, K. Yu-Zhang, V.N. Van, D. Souche, and J. Rivory, Correlation Between Microstructure and the Optical Properties of TiO2 Thin Films Prepared on Different Substrates, Thin Solid Films, 1997, 307, p 38–42

    Article  Google Scholar 

  18. C. Bundesmann, T. Lautenschlager, D. Spemann, A. Finzel, E. Thelander, M. Mensing, and F. Frost, Systematic Investigation of the Properties of TiO2 Films Grown by Reactive Ion Beam Sputter Deposition, Appl. Surf. Sci., 2016. doi:10.1016/j.apsusc.2016.08.056

  19. C. Stegemann, R.S. Moraes, D.A. Duarte, and M. Massi, Thermal Annealing Effect on Nitrogen-Doped TiO2 Thin Films Grown by High Power Impulse Magnetron Sputtering Plasma Power Source, Thin Solid Films, 2017, 625, p 49–55

    Article  Google Scholar 

  20. Y. Gazal, C. Dublanche-Tixier, C. Chazelas, M. Colas, P. Carles, and P. Tristant, Multi-structural TiO2 Film Synthesised by an Atmospheric Pressure Plasma-Enhanced Chemical Vapour Deposition Microwave Torch, Thin Solid Films, 2016, 600, p 43–52

    Article  Google Scholar 

  21. S.H. Nam, J.-S. Hyun, and J.-H. Boo, Synthesis of TiO2 Films Using Single Molecular Precurors by MOCVD Method for Dye-Sensitized Solar Cells Application and Study on Film Growth Mechanism, Mater. Res. Bull., 2012, 47, p 2717–2721

    Article  Google Scholar 

  22. F. Wang, N. Zhu, T. Li, and H.-C. Zhang, Material and Energy Efficiency Analysis of Low Pressure Chemical Vapour Deposition of TiO2 Film, Proc. CIRP, 2014, 15, p 32–37

    Article  Google Scholar 

  23. K.F. Azizi and M.-M. Bagheri-Mohagheghi, The Effect of Solution Flow Rate and Substrate Temperature on Structural and Optical Properties of TiO2 Films Deposited by Spray Pyrolysis Technique, Thin Solid Films, 2017, 621, p 98–101

    Article  Google Scholar 

  24. M.I. Khan, K.A. Bhatti, R. Qindeel, H.S. Althobaiti, and N. Alonizan, Structural, Electrical and Optical Properties of Multilayer TiO2 Thin Films Deposited by Sol-Gel Spin Coating, Results Phys., 2017, 7, p 1437–1439

    Article  Google Scholar 

  25. R. Pandeeswari, R.K. Karn, and B.G. Jeyaprakash, Ethanol Sensing Behaviour of Sol–Gel Dip-Coated TiO2 Thin Films, Sen. Actuators B, 2014, 194, p 470–477

    Article  Google Scholar 

  26. D. Lee, H.-B. Kim, S. Yu, H.J. Kim, W.I. Lee, and D.-J. Jang, Facile Fabrication of Anatase TiO2 Nanotube Arrays Having High Photocatalytic and Photovoltaic Performances by Anodization of Titanium in Mixed Viscous Solvents, J. Mater. Sci., 2014, 49, p 3414–3422

    Article  Google Scholar 

  27. M. Jarosz, A. Pawlik, J. Kapusta-Kołodziej, M. Jaskuła, and G.D. Sulka, Effect of the Previous Usage of Electrolyte on Growth of Anodic Titanium Dioxide (ATO) in a Glycerol-Based Electrolyte, Electrochim. Acta, 2014, 136, p 412–421

    Article  Google Scholar 

  28. M. Fan and F.L. Mantia, Effect of Surface Topography on the Anodization of Titanium, Electrochem. Commun., 2013, 37, p 91–95

    Article  Google Scholar 

  29. J. Xing, Z. Xia, J. Hu, Y. Zhang, and L. Zhong, Time Dependence of Growth and Crystallization of Anodic Titanium Oxide Films in Potentiostatic Mode, Corros. Sci., 2013, 75, p 212–219

    Article  Google Scholar 

  30. J. Kapusta-Kołodziej, O. Tynkevych, A. Pawlik, M. Jarosz, J. Mech, and G.D. Sulka, Electrochemical Growth of Porous Titanium Dioxide in a Glycerol-Based Electrolyte at Different Temperatures, Electrochim. Acta, 2014, 144, p 127–135

    Article  Google Scholar 

  31. M.V. Diamanti and M.P. Pedeferri, Effect of Anodic Oxidation Parameters on the Titanium Oxides Formation, Corros. Sci., 2007, 49, p 939–948

    Article  Google Scholar 

  32. G.K. Mor, O.K. Varghese, M. Paulose, and C.A. Grimes, Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films, Adv. Funct. Mater., 2005, 15, p 1291–1296

    Article  Google Scholar 

  33. Z. Xia, H. Nanjo, H. Tetsuka, T. Ebina, M. Izumisawa, M. Fujimura, and J. Onagawa, Crystallization of the Anodic Oxide on Titanium in Sulphuric Acids Solution at a Very Low Potential, Electrochem. Commun., 2007, 9, p 850–856

    Article  Google Scholar 

  34. J. Xing, Z. Xia, H. Li, Y. Wang, and L. Zhong, Growth and Crystallization Behaviors of Anodic Oxide Films on Sputter-Deposited Titanium at Very Potentials, Trans. Nonferrous Met. Soc. China, 2013, 23, p 3286–3292

    Article  Google Scholar 

  35. T.M. Pochily, Process for anodizing titanium, Technical report, WVT-6605, Benet Laboratories, Watervliet Arsenal, Watervliet, New York, 1966

  36. Y.-T. Sul, C.B. Johansson, Y. Jeong, and T. Albrektsson, The Electrochemical Oxide Growth Behaviour on Titanium in Acid and Alkaline Electrolytes, Med. Eng. Phys., 2001, 23, p 329–346

    Article  Google Scholar 

  37. F. Chu, W. Li, C. Shi, E. Liu, C. He, J. Li, and N. Zhao, Performance Improvement of Dye-Sensitized Solar Cells Using Room-Temperature-Synthesized Hierarchical TiO2 Honeycomb Nanostructures, ACS Appl. Mater. Interfaces., 2013, 5, p 7170–7175

    Article  Google Scholar 

  38. Q. Chen, H. Liu, Y. Xin, and X. Cheng, TiO2 Nanobelts—Effect of Calcination Temperature on Optical, Photoelectrochemical and Photocatalytic Properties, Electrochim. Acta, 2013, 111, p 284–291

    Article  Google Scholar 

  39. X. Wang, Y. Li, H. Song, Y. Huang, R. Sua, and F. Besenbacher, Fluoride Concentration Controlled TiO2 Nanotubes: The Interplay of Microstructure and Photocatalytic Performance, RSC Adv., 2016, 6, p 18333–18339

    Article  Google Scholar 

  40. L. Aïnouche, L. Hamadou, A. Kadri, N. Benbrahim, and D. Bradai, Interfacial Barrier Layer Properties of Three Generations of TiO2 Nanotube Arrays, Electrochim. Acta, 2014, 133, p 597–609

    Article  Google Scholar 

  41. S. Tanaka, Y. Fukushima, I. Nakamura, T. Tanaki, and G. Jerkiewicz, Preparation and Characterization of Microporous Layers on Titanium by Anodization in Sulfuric Acid with and Without Hydrogen Charging, ACS Appl. Mater. Interfaces., 2013, 5, p 3340–3347

    Article  Google Scholar 

  42. R.S. Williamson, J. Disegi, J.A. Griggs, and M.D. Roach, Nanopore Formation on the Surface Oxide of Commercially Pure Titanium Grade 4 Using a Pulsed Anodization Method in Sulfuric Acid, J. Mater. Sci. Mater. Med., 2013, 24, p 2327–2335

    Article  Google Scholar 

  43. Z. Liu and G.E. Thompson, Formation of Porous Anodic Oxide Film on Titanium in Phosphoric Acid Electrolyte, J. Mater. Eng. Perform., 2015, 24, p 59–66

    Article  Google Scholar 

  44. Z.X. Chen, Y. Takao, W.X. Wang, T. Matsubara, and L.M. Ren, Surface Characteristics and In Vitro Biocompatibility of Titanium Anodized in a Phosphoric Acid Solution at Different Voltages, Biomed. Mater., 2009, 4, p 065003

    Article  Google Scholar 

  45. Y.K. Lai, L. Sun, C. Chen, C.G. Nie, J. Zuo, and C.J. Lin, Optical and Electrical Characterization of TiO2 Nanotube Arrays on Titanium Substrate, Appl. Surf. Sci., 2005, 252, p 1101–1106

    Article  Google Scholar 

  46. F.R. Cummings, L.J. Le Roux, M.K. Mathe, and D. Knoesen, Structure Induced Optical Properties of Anodized TiO2 Nanotubes, Mater. Chem. Phys., 2010, 124, p 234–242

    Article  Google Scholar 

  47. P. Acevedo-Peña and I. González, Modification of Growth Parameters of Ti Anodic Films by Fluoride Ion Insertion, J. Solid State Electrochem., 2012, 16, p 2709–2715

    Article  Google Scholar 

  48. F. Di Franco, M. Santamaria, F. Di Quarto, E. Tsuji, and H. Habazaki, The Influence of Nitrogen Incorporation on the Optical Properties of Anodic Ta2O5, Electrochim. Acta, 2012, 59, p 382–386

    Article  Google Scholar 

  49. J.S. Llewelyn Leach and B.R. Pearson, The Conditions for Incorporation of Electrolyte Ions into Anodic Oxides, Electrochim. Acta, 1984, 29, p 1263–1270

    Article  Google Scholar 

  50. T. Dikici, M. Erol, M. Toparli, and E. Celik, Characterization and Photocatalytic Properties of Nanoporous Titanium Dioxide Layer Fabricated on Pure Titanium Substrates by the Anodic Oxidation Process, Ceram. Int., 2014, 40, p 1587–1591

    Article  Google Scholar 

  51. Q.L. Wu, J. Li, R.D. Deshpande, N. Subramanian, S.E. Rankin, F. Yang, and Y.-T. Cheng, Aligned TiO2 Nanotube Arrays as Durable Lithium-Ion Battery Negative Electrodes, J. Phys. Chem. C, 2012, 116, p 18669–18677

    Article  Google Scholar 

  52. R.K. Choudhary, P. Mishra, A. Biswas, and A.C. Bidaye, Structural and Optical Properties of Aluminum Nitride Thin Films Deposited by Pulsed DC Magnetron Sputtering, ISRN Mater. Sci., 2013, 2013, p 1–5

    Article  Google Scholar 

  53. B.V. Blanckenhagen, D. Tonova, and J. Ullmann, Application of the Tauc-Lorentz Formulation to the Interband Absorption of Optical Coating Materials, Appl. Optics, 2002, 41, p 3137–3141

    Article  Google Scholar 

  54. P. Acevedo-Pena, J. Vazquez-Arenas, R. Cabrera-Sierra, L. Lartundo-Rojas, and I. Gonzalez, Ti Anodization in Alkaline Electrolyte: The Relationship Between Transport of Defects, Film Hydration and Composition, J. Electrochem. Soc., 2013, 160, p C277–C284

    Article  Google Scholar 

  55. M. Sardela, X-ray Analysis Methods, Advanced Materials Characterization Workshop, The Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, 2008

  56. Y. Yang, Q. Zhang, B. Zhang, W.B. Mi, L. Chen, L. Li, C. Zhao, E.M. Diallo, and X.X. Zhang, The Influence of Metal Interlayers on the Structural and Optical Properties of Nano-crystalline TiO2 Films, Appl. Surf. Sci., 2012, 258, p 4532–4537

    Article  Google Scholar 

  57. Z. Su, L. Zhang, F. Jiang, and M. Hong, Formation of Crystalline TiO2 by Anodic Oxidation of Titanium, Prog. Nat. Sci. Mater. Int., 2013, 23, p 294–301

    Article  Google Scholar 

  58. S. Sreekantan, R. Hazan, and Z. Lockman, Photoactivity of Anatase-Rutile TiO2 Nanotubes Formed by Anodization Method, Thin Solid Films, 2009, 518, p 16–21

    Article  Google Scholar 

  59. J. Zhao, R. Xu, X. Wang, and Y. Li, In Situ Synthesis of Zirconia Nanotube Crystallines by Direct Anodization, Corros. Sci., 2008, 50, p 1593–1597

    Article  Google Scholar 

  60. M.N. Iliev, V.G. Hadjiev, and A.P. Litvinchuk, Raman and Infrared Spectra of Brookite (TiO2): Experiment and Theory, Vib. Spectrosc., 2013, 64, p 148–152

    Article  Google Scholar 

  61. P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, and K. Shankar, Rutile Phase n- and p-Type Anodic Titania Nanotube Arrays with Square-Shaped Pore Morphologies, Chem. Commun., 2015, 51, p 7816–7819

    Article  Google Scholar 

  62. F. Adar, Spectroscopy Solutions for Materials Analysis, Molecular Spectroscopy Workbench, Raman Spectra of Metal Oxides, 2014

  63. A. Prusi, L. Arsov, B. Haran, and B.N. Popov, Anodic Behavior of Ti in KOH Solutions Ellipsometric and Micro-Raman Spectroscopy Studies, J. Electrochem. Soc., 2002, 149, p B491–B498

    Article  Google Scholar 

  64. T. Theivasanthi and M. Alagar, Titanium Dioxide (TiO2) Nanoparticles XRD Analyses: An Insight. arXiv preprint arXiv:1307.1091. 2013.

  65. S. Stojadinovic, I. Belca, M. Tadic, B. Kasalica, Z. Nedic, and L. Zekovic, Galvanoluminescence Properties of Porous Oxide Films Formed by Anodization of Aluminum in Malonic Acid, J. Electroanal. Chem., 2008, 619–620, p 125–130

    Article  Google Scholar 

  66. A.D. Paola, M. Bellardita, and L. Palmisano, Brookite, the Least Known TiO2 Photocatalyst, Catalyst, 2013, 3, p 36–73

    Article  Google Scholar 

  67. G. Liu, K. Wang, N. Hoivik, and H. Jakobsen, Progress on Free-Standing and Flow-Through TiO2 Nanotube Membranes, Sol. Energy Mater. Sol. C, 2012, 98, p 24–38

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to Dr. A.K. Sahu, Glass & Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, for his assistance during FESEM analysis and Mr. V.B. Jayakrishnan, Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, for recording the GIXRD pattern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, R.K., Sarkar, P., Biswas, A. et al. Structure, Morphology and Optical Properties of TiO2 Films Formed by Anodizing in a Mixed Solution of Citric Acid and Sulfamic Acid. J. of Materi Eng and Perform 26, 4001–4010 (2017). https://doi.org/10.1007/s11665-017-2818-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2818-0

Keywords

Navigation