Skip to main content

Advertisement

Log in

The evaluation of retrobulbar fat tissue in Graves’ orbitopathy with shear-wave ultrasound elastography

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate retrobulbar adipose tissue of patients with active and inactive Graves’ orbitopathy (GO) by shear-wave ultrasound elastography (SWE).

Methods

Followed-up in our ophthalmology clinic due to GO, 72 eyes of 36 patients and 38 eyes of 19 healthy controls were included in this cross-sectional case–control study. Graves’ patients were divided into two subgroups under clinical activity score (CAS): active Graves’ orbitopathy (AGO) (CAS ≥ 3) and inactive Graves’ orbitopathy (IGO) (CAS < 3). SWE measurement values of retrobulbar adipose tissue of all participants were recorded in meters/second, and the intergroup comparisons were performed.

Results

Thirty-four eyes of 17 patients in AGO, 38 eyes of 19 patients in IGO, and 38 eyes of 19 participants in the control group were included in the study. Mean values measured from retrobulbar adipose tissue through SWE were 1.00 ± 0.01 m/sec in AGO, 1.16 ± 0.01 m/sec in IGO, and 0.94 ± 0.01 m/sec in the control groups. Even so, the mean SWE value was significantly higher in the IGO group than in the other groups (p < 0.001). Mean SWE values were significantly higher in the AGO group than in the controls (p = 0.008). In the correlation analysis performed, a significant positive correlation was found between SWE and Hertel exophthalmometer measurement values (p = 0.026, r = 0.212), and thyroid-stimulating hormone receptor antibody (TSHR-Ab) levels (p = 0.018, r = 0.224).

Conclusion

We detected SWE values of retrobulbar adipose tissue high in GO, especially in the IGO group. Such a situation, which we associated with the development of fibrosis, may be an indicator of unresponsiveness to immunomodulatory treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weetman AP (2000) Graves disease. N Eng J Med 343(17):1236–1248

    Article  CAS  Google Scholar 

  2. McIver B, Morris JC (1998) The pathogenesis of Graves disease. Endocrinol Metab Clin North Am 27(1):73–89. https://doi.org/10.1016/s0889-8529(05)70299-1

    Article  CAS  PubMed  Google Scholar 

  3. Chin YH, Ng CH, Lee MH et al (2020) Prevalence of thyroid eye disease in Graves disease: a meta-analysis and systematic review. Clin Endocrinol (Oxf) 93(4):363–374. https://doi.org/10.1111/cen.14296

    Article  PubMed  Google Scholar 

  4. Ippolito S, Cusini C, Lasalvia P et al (2021) Change in newly diagnosed Graves disease phenotype between the twentieth and the twenty-first centuries: meta-analysis and meta-regression. J Endocrinol Invest 44(8):1707–1718. https://doi.org/10.1007/s40618-020-01479-z

    Article  CAS  PubMed  Google Scholar 

  5. Bartalena L, Piantanida E, Gallo D, Lai A (2020) Epidemiology, natural history, risk factors, and prevention of graves orbitopathy. Front Endocrinol (Lausanne) 11:615993. https://doi.org/10.3389/fendo.2020.615993

    Article  PubMed  Google Scholar 

  6. Pfeilschifter J, Ziegler R (1996) Smoking and endocrine ophthalmopathy: impact of smoking severity and current vs lifetime cigarette consumption. Clin Endocrinol (Oxf) 45(4):477–481. https://doi.org/10.1046/j.1365-2265.1996.8220832.x

    Article  CAS  PubMed  Google Scholar 

  7. Farid NR, Balazs C (1998) The genetics of thyroid-associated ophthalmopathy. Thyroid 8(5):407–409. https://doi.org/10.1089/thy.1998.8.407

    Article  CAS  PubMed  Google Scholar 

  8. Laurberg P, Wallin G, Tallstedt L, Abraham-Nordling M, Lundell G, Tørring O (2008) TSH-receptor autoimmunity in Graves disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol 158(1):69–75. https://doi.org/10.1530/EJE-07-0450

    Article  CAS  PubMed  Google Scholar 

  9. Perros P, Kendall-Taylor P (1998) Natural history of thyroid eye disease. Thyroid 8(5):423–425. https://doi.org/10.1089/thy.1998.8.423

    Article  CAS  PubMed  Google Scholar 

  10. Bahn RS (2010) Graves ophthalmopathy. N Engl J Med 362(8):726–738. https://doi.org/10.1056/NEJMra0905750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wiersinga WM, Bartalena L (2002) Epidemiology and prevention of Graves ophthalmopathy. Thyroid 12(10):855–860. https://doi.org/10.1089/105072502761016476

    Article  PubMed  Google Scholar 

  12. Kirsch E, von Arx G, Hammer B (2009) Imaging in Graves orbitopathy. Orbit 28(4):219–225

    PubMed  Google Scholar 

  13. Klingenstein A, Samel C, Garip-Kübler A, Hintschich C, Müller-Lisse UG (2022) Cross-sectional computed tomography assessment of exophthalmos in comparison to clinical measurement via Hertel exophthalmometry. Sci Rep 12(1):11973. https://doi.org/10.1038/s41598-022-16131-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zemanova M (2019) Shear wave elastography in ophthalmic diagnosis. J Fr Ophtalmol 42(1):73–80. https://doi.org/10.1016/j.jfo.2018.05.006

    Article  CAS  PubMed  Google Scholar 

  15. Kimura-Hayama E, Criales-Vera S, Azpeitia-Espinosa L et al (2018) Elastographic ultrasound: an additional image tool in Sjögren’s syndrome. Int J Rheum Dis 21(6):1293–1300. https://doi.org/10.1111/1756-185X.13292

    Article  CAS  PubMed  Google Scholar 

  16. Bartalena L et al (2008) Consensus statement of the European Group on Graves Orbitopathy (EUGOGO) on the management of Graves orbitopathy. Thyroid 18:333–346. https://doi.org/10.1089/thy.2007.0315

    Article  PubMed  Google Scholar 

  17. Mourits MP, Prummel MF, Wiersinga WM, Koornneef L (1997) Clinical activity score as a guide in the management of patients with Graves ophthalmopathy. Clin Endocrinol (Oxf) 47(1):9–14. https://doi.org/10.1046/j.1365-2265.1997.2331047.x

    Article  CAS  PubMed  Google Scholar 

  18. Heufelder AE, Dutton CM, Sarkar G, Donovan KA, Bahn RS (1993) Detection of TSH receptor RNA in cultured fibroblasts from patients with Graves ophthalmopathy and pretibial dermopathy. Thyroid 3(4):297–300. https://doi.org/10.1089/thy.1993.3.297

    Article  CAS  PubMed  Google Scholar 

  19. Crisp MS, Lane C, Halliwell M, Wynford-Thomas D, Ludgate M (1997) Thyrotropin receptor transcripts in human adipose tissue. J Clin Endocrinol Metab 82(6):2003–2005

    Article  CAS  PubMed  Google Scholar 

  20. Feliciello A, Porcellini A, Ciullo I, Bonavolontà G, Avvedimento EV, Fenzi G (1993) Expression of thyrotropin-receptor mRNA in healthy and Graves disease retro-orbital tissue. Lancet 342(8867):337–338. https://doi.org/10.1016/0140-6736(93)91475-2

    Article  CAS  PubMed  Google Scholar 

  21. Tortora F, Cirillo M, Ferrara M et al (2013) Disease activity in Graves ophthalmopathy: diagnosis with orbital MR imaging and correlation with clinical score. Neuroradiol J 26(5):555–564. https://doi.org/10.1177/197140091302600509

    Article  PubMed  PubMed Central  Google Scholar 

  22. Prummel MF, Gerding MN, Zonneveld FW, Wiersinga WM (2001) The usefulness of quantitative orbital magnetic resonance imaging in Graves ophthalmopathy. Clin Endocrinol (Oxf) 54(2):205–209. https://doi.org/10.1046/j.1365-2265.2001.01220.x

    Article  CAS  PubMed  Google Scholar 

  23. Kirsch EC, Kaim AH, De Oliveira MG, von Arx G (2010) Correlation of signal intensity ratio on orbital MRI-TIRM and clinical activity score as a possible predictor of therapy response in Graves orbitopathy–a pilot study at 1.5 T. Neuroradiology 52(2):91–97. https://doi.org/10.1007/s00234-009-0590-z

    Article  PubMed  Google Scholar 

  24. Cakirer S, Cakirer D, Basak M, Durmaz S, Altuntas Y, Yigit U (2004) Evaluation of extraocular muscles in the edematous phase of Graves ophthalmopathy on contrast-enhanced fat-suppressed magnetic resonance imaging. J Comput Assist Tomogr 28(1):80–86. https://doi.org/10.1097/00004728-200401000-00013

    Article  PubMed  Google Scholar 

  25. Dolman PJ, Rootman J (2006) VISA classification for graves orbitopathy. Ophthalmic Plast Reconstr Surg 22(5):319–324. https://doi.org/10.1097/01.iop.0000235499.34867.85

    Article  PubMed  Google Scholar 

  26. European Group on Graves Orbitopathy (EUGOGO), Wiersinga WM, Perros P et al (2006) Clinical assessment of patients with Graves orbitopathy: the European Group on Graves Orbitopathy recommendations to generalists, specialists, and clinical researchers. Eur J Endocrinol 155(3):387–389. https://doi.org/10.1530/eje.1.02230

    Article  CAS  Google Scholar 

  27. Werner SC (1969) Classification of the eye changes of Graves disease. Am J Ophthalmol 68(4):646–648. https://doi.org/10.1016/0002-9394(69)91246-x

    Article  CAS  PubMed  Google Scholar 

  28. Tachibana S, Murakami T, Noguchi H et al (2010) Orbital magnetic resonance imaging combined with clinical activity score can improve the sensitivity of detection of disease activity and prediction of response to immunosuppressive therapy for Graves ophthalmopathy. Endocr J 57(10):853–861. https://doi.org/10.1507/endocrj.k10e-156

    Article  PubMed  Google Scholar 

  29. Dolman PJ (2012) Evaluating Graves orbitopathy. Best Pract Res Clin Endocrinol Metab 26(3):229–248. https://doi.org/10.1016/j.beem.2011.11.007

    Article  PubMed  Google Scholar 

  30. Nagy EV, Toth J, Kaldi I et al (2000) Graves ophthalmopathy: eye muscle involvement in patients with diplopia. Eur J Endocrinol 142(6):591–597. https://doi.org/10.1530/eje.0.1420591

    Article  CAS  PubMed  Google Scholar 

  31. Iaremenko AI, Petrov NL, Matina VN, Kirillov AL (2011) Application of ultrasonography in diagnosis and treatment of acute inflammation of soft tissues in maxillofacial region and neck. Stomatologiia (Mosk) 90(4):41–44

    CAS  PubMed  Google Scholar 

  32. Strianese D, Piscopo R, Elefante A et al (2013) (2013) Unilateral proptosis in thyroid eye disease with subsequent contralateral involvement: a retrospective follow-up study. BMC Ophthalmol 13:21. https://doi.org/10.1186/1471-2415-13-21

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bontzos G, Douglas VP, Douglas KAA, Kapsala Z, Drakonaki EE, Detorakis ET (2021) Ultrasound elastography in ocular and periocular tissues: a review. Curr Med Imaging 17(9):1041–1053. https://doi.org/10.2174/1573405616666201214123117

    Article  PubMed  Google Scholar 

  34. Ferraioli G, Tinelli C, Dal Bello B et al (2012) Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 56(6):2125–2133. https://doi.org/10.1002/hep.25936

    Article  PubMed  Google Scholar 

  35. Barr RG, Memo R, Schaub CR (2012) Shear wave ultrasound elastography of the prostate: initial results. Ultrasound Q 28(1):13–20. https://doi.org/10.1097/RUQ.0b013e318249f594

    Article  PubMed  Google Scholar 

  36. Youk JH, Son EJ, Gweon HM, Kim H, Park YJ, Kim JA (2014) Comparison of strain and shear wave elastography for the differentiation of benign from malignant breast lesions, combined with B-mode ultrasonography: qualitative and quantitative assessments. Ultrasound Med Biol 40(10):2336–2344. https://doi.org/10.1016/j.ultrasmedbio.2014.05.020

    Article  PubMed  Google Scholar 

  37. Sebag F, Vaillant-Lombard J, Berbis J et al (2010) Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab 95(12):5281–5288. https://doi.org/10.1210/jc.2010-0766

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen TM, Aubry JF, Touboul D et al (2012) Monitoring of cornea elastic properties changes during UV-A/riboflavin-induced corneal collagen cross-linking using supersonic shear wave imaging: a pilot study. Invest Ophthalmol Vis Sci 53(9):5948–5954. https://doi.org/10.1167/iovs.11-9142

    Article  CAS  PubMed  Google Scholar 

  39. Touboul D, Gennisson JL, Nguyen TM et al (2014) Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking. Invest Ophthalmol Vis Sci 55(3):1976–1984. https://doi.org/10.1167/iovs.13-13445

    Article  PubMed  Google Scholar 

  40. Dikici AS, Mihmanli I, Kilic F et al (2016) In vivo evaluation of the biomechanical properties of optic nerve and peripapillary structures by ultrasonic shear wave elastography in glaucoma. Iran J Radiol 13(2):e36849. https://doi.org/10.5812/iranjradiol.36849

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bercoff J, Tanter M, Fink M (2004) Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control 51(4):396–409

    Article  PubMed  Google Scholar 

  42. Gennisson JL, Rénier M, Catheline S et al (2007) Acoustoelasticity in soft solids: assessment of the nonlinear shear modulus with the acoustic radiation force. J Acoust Soc Am 122(6):3211–3219. https://doi.org/10.1121/1.2793605

    Article  ADS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of the study.

Author information

Authors and Affiliations

Authors

Contributions

IBG and HY contributed to Validation Conceptualization, and Data Curation; IBG, EDO contributed to Methodology, Investigation; HY contributed to Software; IBG, HY, EDO Resources and Writing—Review and Editing; HY contributed to Visualization; IBG contributed to Supervision, Project Administration, Formal Analysis and Writing—Original Draft Preparation; and all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Irfan Botan Gunes.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

For the present study, approval was obtained from the Local Ethics Committee for Clinical Practices of Kocaeli Health and Technology University with the number of 2023–39 under the 1961 Declaration of Helsinki and its later amendments.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, I.B., Yilmaz, H. & Onal, E.D. The evaluation of retrobulbar fat tissue in Graves’ orbitopathy with shear-wave ultrasound elastography. Int Ophthalmol 44, 13 (2024). https://doi.org/10.1007/s10792-024-02962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-02962-9

Keywords

Navigation