Skip to main content

Advertisement

Log in

Pupillary response to chromatic light stimuli as a possible biomarker at the early stage of glaucoma: a review

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Glaucoma is a multifactorial neurodegenerative disease of the optic nerve currently considered a severe health problem because of its high prevalence, being the primary cause of irreversible blindness worldwide. The most common type corresponds to Primary Open-Angle Glaucoma. Glaucoma produces, among other alterations, a progressive loss of retinal ganglion cells (RGC) and its axons which are the key contributors to generate action potentials that reach the visual cortex to create the visual image. Glaucoma is characterized by Visual Field loss whose main feature is to be painless and therefore makes early detection difficult, causing a late diagnosis and a delayed treatment indication that slows down its progression. Intrinsically photosensitive retinal ganglion cells, which represent a subgroup of RGCs are characterized by their response to short-wave light stimulation close to 480 nm, their non-visual function, and their role in the generation of the pupillary reflex. Currently, the sensitivity of clinical examinations correlates to RGC damage; however, the need for an early damage biomarker is still relevant. It is an urgent task to create new diagnostic approaches to detect an early stage of glaucoma in a prompt, quick, and economical manner. We summarize the pathology of glaucoma and its current clinical detection methods, and we suggest evaluating the pupillary response to chromatic light as a potential biomarker of disease, due to its diagnostic benefit and its cost-effectiveness in clinical practice in order to reduce irreversible damage caused by glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Guglielmi P, Carradori S, Campestre C, Poce G (2019) Novel therapies for glaucoma: a patent review (2013–2019). Expert Opin Ther Pat 29:769–780. https://doi.org/10.1080/13543776.2019.1653279

    Article  CAS  Google Scholar 

  2. Tehrani S (2015) Gender difference in the pathophysiology and treatment of glaucoma. Curr Eye Res 40:191–200. https://doi.org/10.3109/02713683.2014.968935

    Article  CAS  Google Scholar 

  3. Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911. https://doi.org/10.1001/jama.2014.3192

    Article  CAS  Google Scholar 

  4. Tham Y-C, Li X, Wong TY et al (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121:2081–2090. https://doi.org/10.1016/j.ophtha.2014.05.013

    Article  Google Scholar 

  5. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267. https://doi.org/10.1136/bjo.2005.081224

    Article  CAS  Google Scholar 

  6. Kelbsch C, Maeda F, Strasser T et al (2016) Pupillary responses driven by ipRGCs and classical photoreceptors are impaired in glaucoma. Graefe’s Arch Clin Exp Ophthalmol = Albr von Graefes Arch fur Klin und Exp Ophthalmol 254:1361–1370. https://doi.org/10.1007/s00417-016-3351-9

    Article  Google Scholar 

  7. Mantravadi AV, Vadhar N (2015) Glaucoma. Prim Care 42:437–449. https://doi.org/10.1016/j.pop.2015.05.008

    Article  Google Scholar 

  8. Jonas JB, Aung T, Bourne RR et al (2017) Glaucoma. Lancet Lond Engl 390:2183–2193. https://doi.org/10.1016/S0140-6736(17)31469-1

    Article  Google Scholar 

  9. Evangelho K, Mogilevskaya M, Losada-Barragan M, Vargas-Sanchez JK (2019) Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int Ophthalmol 39:259–271. https://doi.org/10.1007/s10792-017-0795-9

    Article  Google Scholar 

  10. Weinreb RN, Khaw PT (2004) Primary open-angle glaucoma. Lancet Lond Engl 363:1711–1720. https://doi.org/10.1016/S0140-6736(04)16257-0

    Article  Google Scholar 

  11. Conlon R, Saheb H, Ahmed IIK (2017) Glaucoma treatment trends: a review. Can J Ophthalmol 52:114–124. https://doi.org/10.1016/j.jcjo.2016.07.013

    Article  Google Scholar 

  12. Bertaud S, Aragno V, Baudouin C, Labbé A (2019) Primary open-angle glaucoma. La Rev Med Interne 40:445–452. https://doi.org/10.1016/j.revmed.2018.12.001

    Article  CAS  Google Scholar 

  13. Davis BM, Crawley L, Pahlitzsch M et al (2016) Glaucoma: the retina and beyond. Acta Neuropathol 132:807–826. https://doi.org/10.1007/s00401-016-1609-2

    Article  Google Scholar 

  14. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073. https://doi.org/10.1126/science.1067262

    Article  CAS  Google Scholar 

  15. Hannibal J, Christiansen AT, Heegaard S et al (2017) Melanopsin expressing human retinal ganglion cells: subtypes, distribution, and intraretinal connectivity. J Comp Neurol 525:1934–1961. https://doi.org/10.1002/cne.24181

    Article  CAS  Google Scholar 

  16. Ba-Ali S, Lund-Andersen H (2017) Pupillometric evaluation of the melanopsin containing retinal ganglion cells in mitochondrial and non-mitochondrial optic neuropathies. Mitochondrion 36:124–129. https://doi.org/10.1016/j.mito.2017.07.003

    Article  CAS  Google Scholar 

  17. Kuze M, Morita T, Fukuda Y et al (2017) Electrophysiological responses from intrinsically photosensitive retinal ganglion cells are diminished in glaucoma patients. J Optom 10:226–232. https://doi.org/10.1016/j.optom.2016.07.004

    Article  Google Scholar 

  18. Feigl B, Zele AJ (2014) Melanopsin-expressing intrinsically photosensitive retinal ganglion cells in retinal disease. Optom Vis Sci Off Publ Am Acad Optom 91:894–903. https://doi.org/10.1097/OPX.0000000000000284

    Article  Google Scholar 

  19. Spitschan M (2019) Melanopsin contributions to non-visual and visual function. Curr Opin Behav Sci 30:67–72. https://doi.org/10.1016/j.cobeha.2019.06.004

    Article  Google Scholar 

  20. Bouffard MA (2019) The pupil. Continuum (Minneap Minn) 25:1194–1214. https://doi.org/10.1212/CON.0000000000000771

    Article  Google Scholar 

  21. Gamlin PDR, McDougal DH, Pokorny J et al (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vis Res 47:946–954. https://doi.org/10.1016/j.visres.2006.12.015

    Article  CAS  Google Scholar 

  22. Markwell EL, Feigl B, Zele AJ (2010) Intrinsically photosensitive melanopsin retinal ganglion cell contributions to the pupillary light reflex and circadian rhythm. Clin Exp Optom 93:137–149. https://doi.org/10.1111/j.1444-0938.2010.00479.x

    Article  Google Scholar 

  23. McDougal DH, Gamlin PD (2010) The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vis Res 50:72–87. https://doi.org/10.1016/j.visres.2009.10.012

    Article  Google Scholar 

  24. Nissen C, Sander B, Milea D et al (2014) Monochromatic pupillometry in unilateral glaucoma discloses no adaptive changes subserved by the ipRGCs. Front Neurol 5:15. https://doi.org/10.3389/fneur.2014.00015

    Article  Google Scholar 

  25. Münch M, Léon L, Collomb S, Kawasaki A (2015) Comparison of acute non-visual bright light responses in patients with optic nerve disease, glaucoma and healthy controls. Sci Rep 5:15185. https://doi.org/10.1038/srep15185

    Article  CAS  Google Scholar 

  26. Chang DS, Xu L, Boland MV, Friedman DS (2013) Accuracy of pupil assessment for the detection of glaucoma: a systematic review and meta-analysis. Ophthalmology 120:2217–2225. https://doi.org/10.1016/j.ophtha.2013.04.012

    Article  Google Scholar 

  27. Rukmini AV, Milea D, Gooley JJ (2019) Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases. Front Neurol 10:76. https://doi.org/10.3389/fneur.2019.00076

    Article  CAS  Google Scholar 

  28. Rukmini AV, Milea D, Baskaran M et al (2015) Pupillary responses to high-irradiance blue light correlate with glaucoma severity. Ophthalmology 122:1777–1785. https://doi.org/10.1016/j.ophtha.2015.06.002

    Article  Google Scholar 

  29. Wride N, Habib M, Morris K et al (2009) Clinical evaluation of a rapid, pupil-based assessment of retinal damage associated with glaucoma. Clin Ophthalmol 3:123–128

    Google Scholar 

  30. Chen Y, Wyatt HJ, Swanson WH, Dul MW (2008) Rapid pupil-based assessment of glaucomatous damage. Optom Vis Sci Off Publ Am Acad Optom 85:471–481. https://doi.org/10.1097/OPX.0b013e318177ec02

    Article  Google Scholar 

  31. Martucci A, Cesareo M, Napoli D et al (2014) Evaluation of pupillary response to light in patients with glaucoma: a study using computerized pupillometry. Int Ophthalmol 34:1241–1247. https://doi.org/10.1007/s10792-014-9920-1

    Article  Google Scholar 

  32. Kankipati L, Girkin CA, Gamlin PD (2011) The post-illumination pupil response is reduced in glaucoma patients. Invest Ophthalmol Vis Sci 52:2287–2292. https://doi.org/10.1167/iovs.10-6023

    Article  Google Scholar 

  33. Pradhan ZS, Rao HL, Puttaiah NK et al (2017) Predicting the magnitude of functional and structural damage in glaucoma from monocular pupillary light responses using automated pupillography. J Glaucoma 26:409–414. https://doi.org/10.1097/IJG.0000000000000634

    Article  Google Scholar 

  34. Pillai MR, Sinha S, Aggarwal P et al (2019) Quantification of RAPD by an automated pupillometer in asymmetric glaucoma and its correlation with manual pupillary assessment. Indian J Ophthalmol 67:227–232. https://doi.org/10.4103/ijo.IJO_648_18

    Article  Google Scholar 

  35. Feigl B, Mattes D, Thomas R, Zele AJ (2011) Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest Ophthalmol Vis Sci 52:4362–4367. https://doi.org/10.1167/iovs.10-7069

    Article  CAS  Google Scholar 

  36. Chang DS, Arora K, Boland MV, Friedman DS (2019) The relationship between quantitative pupillometry and estimated ganglion cell counts in patients with glaucoma. J Glaucoma 28:238–242. https://doi.org/10.1097/IJG.0000000000001183

    Article  Google Scholar 

  37. Gracitelli CPB, Duque-Chica GL, Moura AL et al (2014) A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 55:7997–8005. https://doi.org/10.1167/iovs.14-15146

    Article  Google Scholar 

  38. Gracitelli CPB, Duque-Chica GL, Roizenblatt M et al (2015) Intrinsically photosensitive retinal ganglion cell activity is associated with decreased sleep quality in patients with glaucoma. Ophthalmology 122:1139–1148. https://doi.org/10.1016/j.ophtha.2015.02.030

    Article  Google Scholar 

  39. Adhikari P, Zele AJ, Thomas R, Feigl B (2016) Quadrant field pupillometry detects melanopsin dysfunction in glaucoma suspects and early glaucoma. Sci Rep 6:33373. https://doi.org/10.1038/srep33373

    Article  CAS  Google Scholar 

  40. Najjar RP, Sharma S, Atalay E et al (2018) Pupillary responses to full-field chromatic stimuli are reduced in patients with early-stage primary open-angle glaucoma. Ophthalmology 125:1362–1371. https://doi.org/10.1016/j.ophtha.2018.02.024

    Article  Google Scholar 

  41. Duque-Chica GL, Gracitelli CPB, Moura ALA et al (2018) Inner and outer retinal contributions to pupillary light response: correlation to functional and morphologic parameters in glaucoma. J Glaucoma 27:723–732. https://doi.org/10.1097/IJG.0000000000001003

    Article  Google Scholar 

  42. Carle CF, James AC, Kolic M et al (2015) Blue multifocal pupillographic objective perimetry in glaucoma. Invest Ophthalmol Vis Sci 56:6394–6403. https://doi.org/10.1167/iovs.14-16029

    Article  Google Scholar 

  43. Sharts-Hopko NC, Glynn-Milley C (2009) Primary open-angle glaucoma. Am J Nurs 109:40–47. https://doi.org/10.1097/01.NAJ.0000345434.37734.ee

    Article  Google Scholar 

  44. McMonnies CW (2017) Glaucoma history and risk factors. J Optom 10:71–78. https://doi.org/10.1016/j.optom.2016.02.003

    Article  Google Scholar 

  45. Kass MA, Heuer DK, Higginbotham EJ et al (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol (Chicago, Ill 1960) 120:701–730. https://doi.org/10.1001/archopht.120.6.701

    Article  Google Scholar 

  46. Nucci C, Martucci A, Cesareo M et al (2015) Links among glaucoma, neurodegenerative, and vascular diseases of the central nervous system. Prog Brain Res 221:49–65. https://doi.org/10.1016/bs.pbr.2015.04.010

    Article  Google Scholar 

  47. Schuster AK, Erb C, Hoffmann EM et al (2020) The diagnosis and treatment of glaucoma. Dtsch Arztebl Int 117:225–234. https://doi.org/10.3238/arztebl.2020.0225

    Article  Google Scholar 

  48. Moon J, Park KH, Kim DM, Kim SH (2018) Factors affecting ISNT Rule satisfaction in normal and glaucomatous eyes. Korean J Ophthalmol 32:38–44. https://doi.org/10.3341/kjo.2017.0031

    Article  Google Scholar 

  49. Hashimoto S, Matsumoto C, Eura M et al (2018) Distribution and progression of visual field defects with binocular vision in glaucoma. J Glaucoma 27:519–524. https://doi.org/10.1097/IJG.0000000000000949

    Article  Google Scholar 

  50. Bussel II, Wollstein G, Schuman JS (2014) OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol 98(Suppl 2):ii15-9. https://doi.org/10.1136/bjophthalmol-2013-304326

    Article  Google Scholar 

  51. Neto A, Camera J, Oliveira S et al (2022) Optic disc and cup segmentations for glaucoma assessment using cup-to-disc ratio. Procedia Comput Sci 196:485–492. https://doi.org/10.1016/j.procs.2021.12.040

    Article  Google Scholar 

  52. Qureshi I, Khan MA, Sharif M et al (2020) Detection of glaucoma based on cup-To-disc ratio using fundus images. Int J Intell Syst Technol Appl 19:1–16. https://doi.org/10.1504/IJISTA.2020.105172

    Article  Google Scholar 

  53. Bočková M, Veselý P, Synek S et al (2019) Sensitivity and specificity of spectral OCT in patients with early glaucoma. Ces a Slov Oftalmol Cas Ces Oftalmol Spol a Slov Oftalmol Spol 75:260–264. https://doi.org/10.31348/2019/5/3

    Article  Google Scholar 

  54. Budenz DL, Rhee P, Feuer WJ et al (2002) Sensitivity and specificity of the Swedish interactive threshold algorithm for glaucomatous visual field defects. Ophthalmology 109:1052–1058. https://doi.org/10.1016/s0161-6420(02)01047-3

    Article  Google Scholar 

  55. Wang H, Li M, Zhang Z et al (2019) Physiological function of myocilin and its role in the pathogenesis of glaucoma in the trabecular meshwork (Review). Int J Mol Med 43:671–681. https://doi.org/10.3892/ijmm.2018.3992

    Article  CAS  Google Scholar 

  56. Feng J, Xu J (2019) Identification of pathogenic genes and transcription factors in glaucoma. Mol Med Rep 20:216–224. https://doi.org/10.3892/mmr.2019.10236

    Article  CAS  Google Scholar 

  57. Liu Y, Wang Y, Chen Y et al (2019) Discovery and validation of circulating Hsa-miR-210-3p as a potential biomarker for primary open-angle glaucoma. Invest Ophthalmol Vis Sci 60:2925–2934. https://doi.org/10.1167/iovs.19-26663

    Article  CAS  Google Scholar 

  58. Romano GL, Platania CBM, Forte S et al (2015) MicroRNA target prediction in glaucoma. Prog Brain Res 220:217–240. https://doi.org/10.1016/bs.pbr.2015.04.013

    Article  Google Scholar 

  59. Singh LN, Crowston JG, Lopez Sanchez MIG et al (2018) Mitochondrial DNA variation and disease susceptibility in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 59:4598–4602. https://doi.org/10.1167/iovs.18-25085

    Article  CAS  Google Scholar 

  60. Benoist d’Azy C, Pereira B, Chiambaretta F, Dutheil F (2016) Oxidative and anti-oxidative stress markers in chronic glaucoma: a systematic review and meta-analysis. PLoS ONE 11:e0166915. https://doi.org/10.1371/journal.pone.0166915

    Article  CAS  Google Scholar 

  61. Yang X, Zeng Q, Göktas E et al (2019) T-lymphocyte subset distribution and activity in patients with glaucoma. Invest Ophthalmol Vis Sci 60:877–888. https://doi.org/10.1167/iovs.18-26129

    Article  CAS  Google Scholar 

  62. Mastropasqua R, Agnifili L, Mastropasqua L (2019) Structural and molecular tear film changes in glaucoma. Curr Med Chem 26:4225–4240. https://doi.org/10.2174/0929867325666181009153212

    Article  CAS  Google Scholar 

  63. Yap TE, Davis BM, Guo L et al (2018) Annexins in glaucoma. Int J Mol Sci. https://doi.org/10.3390/ijms19041218

    Article  Google Scholar 

  64. Bua S, Supuran CT (2019) Diagnostic markers for glaucoma: a patent and literature review (2013–2019). Expert Opin Ther Pat 29:829–839. https://doi.org/10.1080/13543776.2019.1667336

    Article  CAS  Google Scholar 

  65. Beykin G, Norcia AM, Srinivasan VJ et al (2021) Discovery and clinical translation of novel glaucoma biomarkers. Prog Retin Eye Res 80:100875. https://doi.org/10.1016/j.preteyeres.2020.100875

    Article  Google Scholar 

  66. Barbosa-Breda J, Himmelreich U, Ghesquière B et al (2018) Clinical metabolomics and glaucoma. Ophthalmic Res 59:1–6. https://doi.org/10.1159/000479158

    Article  CAS  Google Scholar 

  67. Colligris B, Crooke A, Gasull X et al (2012) Recent patents and developments in glaucoma biomarkers. Recent Pat Endocr Metab Immune Drug Discov 6:224–234. https://doi.org/10.2174/187221412802481739

    Article  CAS  Google Scholar 

  68. Beykin G, Goldberg JL (2019) Molecular biomarkers for glaucoma. Curr Ophthalmol Rep 7:171–176. https://doi.org/10.1007/s40135-019-00213-0

    Article  Google Scholar 

  69. Obara EA, Hannibal J, Heegaard S, Fahrenkrug J (2016) Loss of Melanopsin-expressing retinal ganglion cells in severely staged glaucoma patients. Invest Ophthalmol Vis Sci 57:4661–4667. https://doi.org/10.1167/iovs.16-19997

    Article  CAS  Google Scholar 

  70. Mure LS, Vinberg F, Hanneken A, Panda S (2019) Functional diversity of human intrinsically photosensitive retinal ganglion cells. Science 366:1251–1255. https://doi.org/10.1126/science.aaz0898

    Article  CAS  Google Scholar 

  71. Sexton T, Buhr E, Van Gelder RN (2012) Melanopsin and mechanisms of non-visual ocular photoreception. J Biol Chem 287:1649–1656. https://doi.org/10.1074/jbc.R111.301226

    Article  CAS  Google Scholar 

  72. Chen S-K, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476:92–95. https://doi.org/10.1038/nature10206

    Article  CAS  Google Scholar 

  73. Do MTH (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104:205–226. https://doi.org/10.1016/j.neuron.2019.07.016

    Article  CAS  Google Scholar 

  74. Do MTH, Yau K-W (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90:1547–1581. https://doi.org/10.1152/physrev.00013.2010

    Article  CAS  Google Scholar 

  75. Sliney DH (2016) What is light? The visible spectrum and beyond. Eye (Lond) 30:222–229. https://doi.org/10.1038/eye.2015.252

    Article  CAS  Google Scholar 

  76. Cui Q, Ren C, Sollars PJ et al (2015) The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience 284:845–853. https://doi.org/10.1016/j.neuroscience.2014.11.002

    Article  CAS  Google Scholar 

  77. Fogo GM, Shuboni-Mulligan DD, Gall AJ (2019) Melanopsin-containing ipRGCs are resistant to excitotoxic injury and maintain functional non-image forming behaviors after insult in a diurnal rodent model. Neuroscience 412:105–115. https://doi.org/10.1016/j.neuroscience.2019.05.058

    Article  CAS  Google Scholar 

  78. Wang S, Gu D, Zhang P et al (2018) Melanopsin-expressing retinal ganglion cells are relatively resistant to excitotoxicity induced by N-methyl-d-aspartate. Neurosci Lett 662:368–373. https://doi.org/10.1016/j.neulet.2017.10.055

    Article  CAS  Google Scholar 

  79. DeParis S, Caprara C, Grimm C (2012) Intrinsically photosensitive retinal ganglion cells are resistant to N-methyl-D-aspartic acid excitotoxicity. Mol Vis 18:2814–2827

    CAS  Google Scholar 

  80. Li RS, Chen B-Y, Tay DK et al (2006) Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci 47:2951–2958. https://doi.org/10.1167/iovs.05-1295

    Article  Google Scholar 

  81. Daniel S, Clark AF, McDowell CM (2018) Subtype-specific response of retinal ganglion cells to optic nerve crush. Cell death Discov 4:7. https://doi.org/10.1038/s41420-018-0069-y

    Article  CAS  Google Scholar 

  82. Honda S, Namekata K, Kimura A et al (2019) Survival of alpha and intrinsically photosensitive retinal ganglion cells in NMDA-induced neurotoxicity and a mouse model of normal tension glaucoma. Invest Ophthalmol Vis Sci 60:3696–3707. https://doi.org/10.1167/iovs.19-27145

    Article  CAS  Google Scholar 

  83. Vidal-Villegas B, Di Pierdomenico J, Miralles de Imperial-Ollero JA et al (2019) Melanopsin(+)RGCs are fully resistant to NMDA-induced excitotoxicity. Int J Mol Sci. https://doi.org/10.3390/ijms20123012

    Article  Google Scholar 

  84. Wang H, Lu Q, Wang N et al (2008) Loss of melanopsin-containing retinal ganglion cells in a rat glaucoma model. Chin Med J (Engl) 121:1015–1019

    Article  Google Scholar 

  85. Wilhelm H (2011) Disorders of the pupil. Handb Clin Neurol 102:427–466. https://doi.org/10.1016/B978-0-444-52903-9.00022-4

    Article  Google Scholar 

  86. Muñoz Negrete FJ, Rebolleda G (2013) Automated evaluation of the pupil. Arch Soc Esp Oftalmol 88:125–126

    Article  Google Scholar 

  87. La Morgia C, Carelli V, Carbonelli M (2018) Melanopsin retinal ganglion cells and pupil: clinical implications for neuro-ophthalmology. Front Neurol 9:1047. https://doi.org/10.3389/fneur.2018.01047

    Article  Google Scholar 

  88. Waisbourd M, Lee B, Ali MH et al (2015) Detection of asymmetric glaucomatous damage using automated pupillography, the swinging flashlight method and the magnified-assisted swinging flashlight method. Eye (Lond) 29:1321–1328. https://doi.org/10.1038/eye.2015.106

    Article  CAS  Google Scholar 

  89. Suo L, Zhang D, Qin X et al (2020) Evaluating state-of-the-art computerized pupillary assessments for glaucoma detection: a systematic review and meta-analysis. Front Neurol 11:777

    Article  Google Scholar 

  90. Ksendzovsky A, Pomeraniec IJ, Zaghloul KA et al (2017) Clinical implications of the melanopsin-based non-image-forming visual system. Neurology 88:1282–1290. https://doi.org/10.1212/WNL.0000000000003761

    Article  CAS  Google Scholar 

  91. Adhikari P, Zele AJ, Feigl B (2015) The post-illumination pupil response (PIPR). Invest Ophthalmol Vis Sci 56:3838–3849. https://doi.org/10.1167/iovs.14-16233

    Article  CAS  Google Scholar 

  92. Liao H-W, Ren X, Peterson BB et al (2016) Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations. J Comp Neurol 524:2845–2872. https://doi.org/10.1002/cne.23995

    Article  CAS  Google Scholar 

  93. Kim US, Mahroo OA, Mollon JD, Yu-Wai-Man P (2021) Retinal ganglion cells-diversity of cell types and clinical relevance. Front Neurol 12:661938. https://doi.org/10.3389/fneur.2021.661938

    Article  Google Scholar 

  94. Lawlor M, Quartilho A, Bunce C et al (2017) Patients with normal tension glaucoma have relative sparing of the relative afferent pupillary defect compared to those with open angle glaucoma and elevated intraocular pressure. Invest Ophthalmol Vis Sci 58:5237–5241. https://doi.org/10.1167/iovs.17-21688

    Article  Google Scholar 

  95. Fontana L, Coassin M, Iovieno A et al (2017) Cataract surgery in patients with pseudoex-foliation syndrome: current updates. Clin Ophthalmol 11:1377–1383. https://doi.org/10.2147/OPTH.S142870

    Article  CAS  Google Scholar 

  96. Nath M, Odayappan A, Tripathy K et al (2021) Predicting zonular strength based on maximum pupillary mydriasis in patients with pseudoexfoliation syndrome. Med Hypotheses 146:110402. https://doi.org/10.1016/j.mehy.2020.110402

    Article  Google Scholar 

  97. Philip SS, John SS, Simha AR et al (2012) Ocular clinical profile of patients with pseudoexfoliation syndrome in a tertiary eye care center in South India. Middle East Afr J Ophthalmol 19:231–236. https://doi.org/10.4103/0974-9233.95259

    Article  Google Scholar 

  98. Rukmini AV, Najjar RP, Atalay E et al (2017) Pupillary responses to light are not affected by narrow irido-corneal angles. Sci Rep 7:10190. https://doi.org/10.1038/s41598-017-10303-3

    Article  CAS  Google Scholar 

  99. Kelbsch C, Strasser T, Chen Y et al (2019) Standards in pupillography. Front Neurol 10:129. https://doi.org/10.3389/fneur.2019.00129

    Article  Google Scholar 

  100. Zénon A (2019) Eye pupil signals information gain. Proc Biol Sci 286:20191593. https://doi.org/10.1098/rspb.2019.1593

    Article  Google Scholar 

  101. Kastner A, King AJ (2020) Advanced glaucoma at diagnosis: current perspectives. Eye (Lond) 34:116–128. https://doi.org/10.1038/s41433-019-0637-2

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research was supported by Fondo Concursable Interno Investigación 2022-DETEM Universidad de Chile and CONICYT-PFCHA/Doctorado Nacional/2020–21200346.

Author information

Authors and Affiliations

Authors

Contributions

IPR and CAL designed the study, wrote, and published the manuscript. SM reviewed the first draft of the manuscript. IPR and SG reviewed and edited the manuscript. IPR, CAL and SG prepared the manuscript for publication. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Iván Plaza-Rosales.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arévalo-López, C., Gleitze, S., Madariaga, S. et al. Pupillary response to chromatic light stimuli as a possible biomarker at the early stage of glaucoma: a review. Int Ophthalmol 43, 343–356 (2023). https://doi.org/10.1007/s10792-022-02381-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02381-8

Keywords

Navigation