Skip to main content

Advertisement

Log in

Could adverse effects and complications of selective laser trabeculoplasty be decreased by low-power laser therapy?

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Selective laser trabeculoplasty (SLT) has been used for treatment of primary open-angle glaucoma, ocular hypertension, pigmenter and pseudoexfoliative glaucoma being considered a low-risk procedure. Therefore, transitory and permanent adverse effects have been reported, including corneal changes, subclinical edema, and reduction in endothelial cells and in central corneal thickness. Despite rarer, serious corneal complications after SLT can be permanent and lead to visual impairment, central corneal haze, opacity and narrowing. The mechanism involves increase of vasoactive and chemotactic cytokines causing inflammatory infiltrate, destruction of stromal collagen by fibroblasts and increase of matrix metalloproteinases type 2, which impair reepithelization. SLT also increases free radical production and reduces antioxidant enzymes, resulting in endothelium damages. Low-power laser therapy (LPLT) has been used in regenerative medicine based on its biostimulatory and anti-inflammatory effects. Biostimulation occurs through the interaction of laser photons with cytochrome C oxidase enzyme, which activates intracellular biochemical cascades causing synthesis of a number of molecules related to anti-inflammatory, regenerative effects, pain relief and reduction in edema. It has been showed that LPLT reduces gene expression related to pro-inflammatory cytokines and matrix metalloproteinases, and it increases expression of growth factors related to its proliferative and healing actions. Although radiations emitted by low-power lasers are considered safe and able to induce therapeutic effects, researches based on experimental models for glaucoma could bring important data if LPLT could be an alternative approach to improve acceptation for patients undergoing SLT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martins da Silva MI, Tavares-Ferreira J, Estrela-Silva S, Melo AB, Falcão-Reis F (2015) Trabeculoplastia seletiva por laser—revisão. Oftalmologia 39:215–222

    Google Scholar 

  2. De Keyser M, De Belder M, De Belder S, De Groot V (2016) Where does selective laser trabeculoplasty stand now? A review. Eye Vis (Lond) 3:10

    Article  Google Scholar 

  3. Zhou Y, Aref AA (2017) A review of selective laser trabeculoplasty: recent findings and current perspectives. Ophthalmol Ther 6:19–32

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Birt CM (2012) Argon versus selective laser trabeculoplasty in younger patients: 2-year results. J Glaucoma 21:112–115

    PubMed  Google Scholar 

  5. Zhang M, Li B, Wang J, Liu W, Sun Y, Wu X (2014) Clinical results of selective laser trabeculoplasty in silicone oil-induced secondary glaucoma. Graefes Arch Clin Exp Ophthalmol 252:983–987

    Article  PubMed  CAS  Google Scholar 

  6. Narayanaswamy A, Leung CK, Istiantoro DV, Perera SA, Ho CL, Nongpiur ME, Baskaran M, Htoon HM, Wong TT, Goh D, Su DH, Belkin M, Aung T (2015) Efficacy of selective laser trabeculoplasty in primary angle-closure glaucoma: a randomized clinical trial. JAMA Ophthalmol 133:206–212

    Article  PubMed  Google Scholar 

  7. Ali Aljasim L, Owaidhah O, Edward DP (2016) Selective laser trabeculoplasty in primary angle-closure glaucoma after laser peripheral iridotomy: a case–control study. J Glaucoma 25:e253–e258

    Article  PubMed  Google Scholar 

  8. Bettis DI, Whitehead JJ, Farhi P, Zabriskie NA (2016) Intraocular pressure spike and corneal decompensation following selective laser trabeculoplasty in patients with exfoliation glaucoma. J Glaucoma 25:e433–e437

    Article  PubMed  Google Scholar 

  9. Zhang L, Weizer JS, Musch DC (2017) Perioperative medications for preventing temporarily increased intraocular pressure after laser trabeculoplasty. Cochrane Datab Syst Rev 2:CD010746

    Google Scholar 

  10. Martinez-de-la-Casa JM, Garcia-Feijoo J, Castillo A, Matilla M, Macias JM, Benitez-del-Castillo JM (2004) Selective vs argon laser trabeculoplasty: hypotensive efficacy, anterior chamber inflammation, and postoperative pain. Eye 18:498–502

    Article  PubMed  CAS  Google Scholar 

  11. Nagar M, Ogunyomade A, O’Brart DP, Howes F, Marshall J (2005) A randomised, prospective study comparing selective laser trabeculoplasty with latanoprost for the control of intraocular pressure in ocular hypertension and open angle glaucoma. Br J Ophthalmol 89:1413–1417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wong MO, Lee JW, Choy BN, Chan JC, Lai JS (2015) Systematic review and meta-analysis on the efficacy of selective laser trabeculoplasty in open-angle glaucoma. Surv Ophthalmol 60:36–50

    Article  PubMed  Google Scholar 

  13. Moubayed SP, Hamid M, Choremis J, Li G (2009) An unusual finding of corneal edema complicating selective laser trabeculoplasty. Can J Ophthalmol 44:337–338

    Article  PubMed  Google Scholar 

  14. Huang Y, Zhang M, Huang C, Chen B, Lam DS, Zhang S, Congdon N (2011) Determinants of postoperative corneal edema and impact on goldmann intraocular pressure. Cornea 30:962–967

    Article  PubMed  Google Scholar 

  15. Knickelbein JE, Singh A, Flowers BE, Nair UK, Eisenberg M, Davis R, Raju LV, Schuman JS, Conner IP (2014) Acute corneal edema with subsequent thinning and hyperopic shift following selective laser trabeculoplasty. J Cataract Refract Surg 40:1731–1735

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ozkok A, Tamcelik N, Ucar Comlekoglu D, Iskeleli G (2014) Corneal decompensation after selective laser trabeculoplasty. Case Rep Ophthalmol Med 2014:851971

    PubMed  PubMed Central  Google Scholar 

  17. Chadha N, Belyea DA, Grewal S (2016) Herpetic stromal keratitis following selective laser trabeculoplasty. Case Rep Ophthalmol Med 2016:5768524

    PubMed  PubMed Central  Google Scholar 

  18. Song J, Yu D, Song A, Palmares T, Song HS, Song M (2014) Corneal thinning and opacity following selective laser trabeculoplasty: a case report. Br J Med Res 4:279–287

    Article  Google Scholar 

  19. Guven Yilmaz S, Palamar M, Yusifov E, Ates H, Egrilmez S, Yagci A (2015) Effects of primary selective laser trabeculoplasty on anterior segment parameters. Int J Ophthalmol 8:954–959

    PubMed  PubMed Central  Google Scholar 

  20. Koc M, Durukan I, Koban Y, Ceran BB, Ayar O, Ekinci M, Yilmazbas P (2015) Effect of selective laser trabeculoplasty on macular thickness. Clin Ophthalmol 9:2335–2338

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Atalay K, Kirgiz A, Serefoglu Cabuk K, Erdogan Kaldirim H (2016) Corneal topographic alterations after selective laser trabeculoplasty. Int Ophthalmol 37:905–910

    Article  PubMed  Google Scholar 

  22. White AJ, Mukherjee A, Hanspal I, Sarkies NJ, Martin KR, Shah P (2013) Acute transient corneal endothelial changes following selective laser trabeculoplasty. Clin Exp Ophthalmol 41:435–441

    Article  PubMed  Google Scholar 

  23. Lee JW, Chan JC, Chang RT, Singh K, Liu CC, Gangwani R, Wong MOM, Lai JSM (2014) Corneal changes after a single session of selective laser trabeculoplasty for open-angle glaucoma. Eye 28:47–52

    Article  PubMed  CAS  Google Scholar 

  24. Regina M, Bunya VY, Orlin SE, Ansari H (2011) Corneal edema and haze after selective laser trabeculoplasty. J Glaucoma 20:327–329

    Article  PubMed  Google Scholar 

  25. Guzey M, Vural H, Satici A, Karadede S, Dogan Z (2001) Increase of free oxygen radicals in aqueous humour induced by selective Nd:YAG laser trabeculoplasty in the rabbit. Eur J Ophthalmol 11:47–52

    Article  PubMed  CAS  Google Scholar 

  26. Kaye S, Choudhary A (2006) Herpes simplex keratitis. Prog Retina Eye Res 25:355–380

    Article  Google Scholar 

  27. Hong JW, Liu JJ, Lee JS, Mohan RR, Mohan RR, Woods DJ, He YJ, Wilson SE (2001) Proinflammatory chemokine induction in keratocytes and inflammatory cell infiltration into the cornea. Invest Ophthalmic Vis Sci 42:2795–2803

    CAS  Google Scholar 

  28. Shoshani Y, Pe’er J, Doviner V, Frucht-Pery J, Solomon A (2005) Increased expression of inflammatory cytokines and matrix metalloproteinases in pseudophakic corneal edema. Invest Ophthalmol Vis Sci 46:1940

    Article  PubMed  Google Scholar 

  29. Mester E, Szende B, Tora JG (1967) Effect of laser on hair growth of mice. Kiserl Orvostud 19:628–631

    Google Scholar 

  30. Abrahamse H (2012) Regenerative medicine, stem cells, and low-level laser therapy: future directives. Photomed Laser Surg 30:681–682

    Article  PubMed  Google Scholar 

  31. Takenori A, Ikuhiro M, Shogo U, Hiroe K, Junji S, Yasutaka T, Hiroya K, Miki N (2016) Immediate pain relief effect of low level laser therapy for sports injuries: Randomized, double-blind placebo clinical trial. J Sci Med Sport 19:980–983

    Article  PubMed  CAS  Google Scholar 

  32. Lizarelli RFZ, Lamano-Carvalho TL, Brentegani LG (1999) Histometrical evaluation of the healing of the dental alveolus in rats after irradiation with a low-powered GaAlAs laser. SPIE 3593:49–55

    Google Scholar 

  33. Forney R, Mauro T (1999) Using lasers in diabetic wound healing. Diabetes Technol Ther 1:189–192

    Article  PubMed  CAS  Google Scholar 

  34. AlGhamdi KM, Kumar A, Moussa NA (2011) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249

    Article  PubMed  Google Scholar 

  35. Basso FG, Pansani TN, Cardoso LM, Citta M, Soares DG, Scheffel DS, Hebling J, de Souza Costa CA (2017) Epithelial cell-enhanced metabolism by low-level laser therapy and epidermal growth factor. Lasers Med Sci. https://doi.org/10.1007/s10103-017-2176-z

    Article  PubMed  Google Scholar 

  36. Niemz MH (2007) Laser–tissue interactions: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  37. Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He–Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546

    PubMed  CAS  Google Scholar 

  38. Boulton M, Marshall J (1986) He–Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134

    Google Scholar 

  39. Pinheiro AL, Carneiro NS, Vieira AL, Brugnera A Jr, Zanin FA, Barros RA, Silva PS (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20:23–26

    Article  PubMed  Google Scholar 

  40. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361

    Article  PubMed  CAS  Google Scholar 

  41. Takac S, Stojanovic S (1998) Diagnostic and biostimulating lasers. Med Preg 51:245–249

    CAS  Google Scholar 

  42. Ghao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16:4

    Article  CAS  Google Scholar 

  43. Stadler I, Evans R, Kolb B, Naim JO, Narayam V, Buehner N, Lanzafame RJ (2000) In vitro effects of low level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261

    Article  PubMed  CAS  Google Scholar 

  44. Migliario M, Pittarella P, Fanuli M, Rizzi M, Renò F (2014) Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467

    Article  PubMed  Google Scholar 

  45. Rizzi CF, Mauriz JL, Corrêa DSF, Moreira AJ, Zettler CG, Fillipin LI, Marroni NP, González-Gallego J (2006) Effects of low level laser therapy (LLLT) on the nuclear factor (NF-KB) signalling pathway in traumatized muscle. Lasers Surg Med 38:704–713

    Article  PubMed  Google Scholar 

  46. Fillipin LI, Mauriz JL, Vedovelli K, Moreira AJ, Zettler CG, Lech O, Marroni NP, González-Gallego J (2005) Low level laser therapy (LLLT) prevents oxidative stress and reduces fibrosis in rat traumatized achilles tendon. Lasers Surg Med 37:293–300

    Article  PubMed  Google Scholar 

  47. das Neves LM, Leite GP, Marcolino AM, Pinfildi CE, Garcia SB, de Araújo JE, Guirro EC (2017) Laser photobiomodulation (830 and 660 nm) in mast cells, VEGF, FGF, and CD34 of the musculocutaneous flap in rats submitted to nicotine. Lasers Med Sci 32:335–341

    Article  PubMed  Google Scholar 

  48. Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35:369–376

    Article  PubMed  Google Scholar 

  49. Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS (2007) Helium–Neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investig Dermatol 127:2048–2057

    Article  PubMed  CAS  Google Scholar 

  50. Sperandio FF, Simões A, Corrêa L, Aranha AC, Giudice FS, Hamblin MR, Sousa SC (2015) Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair. J Biophotonics 8:795–803

    Article  PubMed  CAS  Google Scholar 

  51. Lee JY, Kim IR, Park BS, Kim YD, Chung IK, Song JM, Shin SH (2015) Effect of low-level laser therapy on oral keratinocytes exposed to bisphosphonate. Lasers Med Sci 30:635–643

    Article  PubMed  Google Scholar 

  52. Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28:367–374

    Article  PubMed  Google Scholar 

  53. Engel KW, Khan I, Arany PR (2016) Cell lineage responses to photobiomodulation therapy. J Biophotonics 9:1148–1156

    Article  PubMed  CAS  Google Scholar 

  54. Gagnon D, Gibson TW, Singh A, zur Linden AR, Kazienko JE, LaMarre J (2016) An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model. BMC Vet Res 12:73

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cunha MJ, Esper LA, Sbrana MC, Cirino CC, Oliveira PG, de Almeida AL (2013) Evaluation of the effectiveness of diode laser on pain and edema in individuals with cleft lip and palate submitted to secondary bone graft. Cleft Palate Craniofac J 50:e92–e97

    Article  PubMed  Google Scholar 

  56. Meneguzzo DT, Lopes LA, Pallota R, Soares-Ferreira L, Lopes-Martins RA, Ribeiro MS (2013) Prevention and treatment of mice paw edema by near-infrared low-level laser therapy on lymph nodes. Lasers Med Sci 28:973–980

    Article  PubMed  Google Scholar 

  57. Nadur-Andrade N, Dale CS, Santos AS, Soares AM, de Lima CJ, Zamuner SR (2014) Photobiostimulation reduces edema formation induced in mice by Lys-49 phospholipases A2 isolated from Bothrops moojeni venom. Photochem Photobiol Sci 13:1561–1567

    Article  PubMed  CAS  Google Scholar 

  58. Ezzat AE, El-Shenawy HM, El-Begermy MM, Eid MI, Akel MM, Abbas AY (2016) The effectiveness of low-level laser on postoperative pain and edema in secondary palatal operation. Int J Pediatr Otorhinolaryngol 89:183–186

    Article  PubMed  Google Scholar 

  59. Meek KM, Leonard DW, Connon CJ, Dennis S, Khan S (2003) Transparency swelling and scarring in the corneal stroma. Eye (Lond) 17:927–936

    Article  CAS  Google Scholar 

  60. Hayes S, Boote C, Tuft SJ, Quantock AJ, Meek KM (2007) A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Exp Eye Res 84:423–434

    Article  PubMed  CAS  Google Scholar 

  61. de Freitas CE, Bertaglia RS, Vechetti Júnior IJ, Mareco EA, Salomão RA, de Paula TG, Nai GA, Carvalho RF, Pacagnelli FL, Dal-Pai-Silva M (2015) High final energy of low-level gallium arsenide laser therapy enhances skeletal muscle recovery without a positive effect on collagen remodeling. Photochem Photobiol 91:957–965

    Article  PubMed  CAS  Google Scholar 

  62. Tatmatsu-Rocha JC, Ferraresi C, Hamblin MR, Damasceno Maia F, do Nascimento NR, Driusso P, Parizotto NA (2016) Low-level laser therapy (904 nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J Photochem Photobiol B 164:96–102

    Article  PubMed  CAS  Google Scholar 

  63. Tim CR, Bossini PS, Kido HW, Malavazi I, von Zeska Kress MR, Carazzolle MF, Rennó AC, Parizotto NA (2016) Low-level laser therapy induces an upregulation of collagen gene expression during the initial process of bone healing: a microarray analysis. J Biomed Opt 21:88001

    Article  PubMed  Google Scholar 

  64. Trajano ET, da Trajano LA, Dos Santos Silva MA, Venter NG, de Porto LC, de Fonseca A, Monte-Alto-Costa A (2015) Low-level red laser improves healing of second-degree burn when applied during proliferative phase. Lasers Med Sci 30:1297–1304

    Article  PubMed  Google Scholar 

  65. Yang J, Wang S, Dong L, An X, Li Y, Li J, Tu Y, Tao J (2016) Skin healing and collagen changes of rats after fractional erbium:yttrium aluminum garnet laser: observation by reflectance confocal microscopy with confirmed histological evidence. Lasers Med Sci 31:1251–1260

    Article  PubMed  Google Scholar 

  66. de Medeiros ML, Araújo-Filho I, da Silva EM, de Sousa Queiroz WS, Soares CD, de Carvalho MG, Maciel MA (2017) Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci 32:35–43

    Article  PubMed  Google Scholar 

  67. Lemos GA, Rissi R, de Souza Pires IL, de Oliveira LP, de Aro AA, Pimentel ER, Palomari ET (2016) Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint. Lasers Med Sci 31:1051–1059

    Article  PubMed  Google Scholar 

  68. Marques AC, Albertini R, Serra AJ, da Silva EA, de Oliveira VL, Silva LM, Leal-Junior EC, de Carvalho PT (2016) Photobiomodulation therapy on collagen type I and III, vascular endothelial growth factor, and metalloproteinase in experimentally induced tendinopathy in aged rats. Lasers Med Sci 31:1915–1923

    Article  PubMed  Google Scholar 

  69. Kamal W, George J, Manssor E (2017) Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low-level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia. Lasers Med Sci 32:297–303

    Article  PubMed  Google Scholar 

  70. Sakurai Y, Yamaguchi M, Abiko Y (2000) Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 108:29–34

    Article  PubMed  CAS  Google Scholar 

  71. Prianti AC Jr, Silva JA Jr, Dos Santos RF, Rosseti IB, Costa MS (2014) Low-level laser therapy (LLLT) reduces the COX-2 mRNA expression in both subplantar and total brain tissues in the model of peripheral inflammation induced by administration of carrageenan. Lasers Med Sci 29:1397–1403

    PubMed  Google Scholar 

  72. Yassaei S, Aghili H, Afshari JT, Bagherpour A, Eslami F (2016) Effects of diode laser (980 nm) on orthodontic tooth movement and interleukin 6 levels in gingival crevicular fluid in female subjects. Lasers Med Sci 31:1751–1759

    Article  PubMed  CAS  Google Scholar 

  73. Miranda da Silva C, Peres Leal M, Brochetti RA, Braga T, Vitoretti LB, Saraiva Câmara NO, Damazo AS, Ligeiro-de-Oliveira AP, Chavantes MC, Lino-Dos-Santos-Franco A (2015) Low level laser therapy reduces the development of lung inflammation induced by formaldehyde exposure. PLoS ONE 10:e0142816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Silveira PC, Scheffer Dda L, Glaser V, Remor AP, Pinho RA, Aguiar Junior AS, Latini A (2016) Low-level laser therapy attenuates the acute inflammatory response induced by muscle traumatic injury. Free Radic Res 50:503–513

    Article  PubMed  CAS  Google Scholar 

  75. de Oliveira VL, Silva JA Jr, Serra AJ, Pallotta RC, da Silva EA, de Farias Marques AC, Feliciano RD, Marcos RL, Leal-Junior EC, de Carvalho PT (2017) Photobiomodulation therapy in the modulation of inflammatory mediators and bradykinin receptors in an experimental model of acute osteoarthritis. Lasers Med Sci 32:87–94

    Article  PubMed  Google Scholar 

  76. Rezaei Kanavi M, Tabeie F, Sahebjam F, Poursani N, Jahanbakhsh N, Paymanpour P, AfsarAski S (2016) Short-term effects of extremely low-frequency pulsed electromagnetic field and pulsed low-level laser therapy on rabbit model of corneal alkali burn. Exp Eye Res 145:216–223

    Article  PubMed  CAS  Google Scholar 

  77. Gelatt KN (1977) Animal models for glaucoma. Invest Ophthalmol Vis Sci 16:592–596

    PubMed  CAS  Google Scholar 

  78. Podos SM (1976) Animal models of human glaucoma. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol 81:OP632–OP635

    PubMed  CAS  Google Scholar 

  79. Gherezghiher T, March WF, Nordquist RE, Koss MC (1986) Laser-induced glaucoma in rabbits. Exp Eye Res 43:885–894

    Article  PubMed  CAS  Google Scholar 

  80. Lauber JK (1987) Light-induced avian glaucoma as an animal model for human primary glaucoma. J Ocul Pharmacol 3:77–100

    Article  PubMed  CAS  Google Scholar 

  81. Rasmussen CA, Kaufman PL (2005) Primate glaucoma models. J Glaucoma 14:311–314

    Article  PubMed  Google Scholar 

  82. Johnson B, House P, Morgan W, Sun X, Yu DY (1999) Developing laser-induced glaucoma in rabbits. Aust N Z J Ophthalmol 27:180–183

    Article  PubMed  CAS  Google Scholar 

  83. Mabuchi F, Aihara M, Mackey MR, Lindsey JD, Weinreb RN (2003) Optic nerve damage in experimental mouse ocular hypertension. Invest Ophthalmol Vis Sci 44:4321–4330

    Article  PubMed  Google Scholar 

  84. Steinhart MR, Cone FE, Nguyen C, Nguyen TD, Pease ME, Puk O, Graw J, Oglesby EN, Quigley HA (2012) Mice with an induced mutation in collagen 8A2 develop larger eyes and are resistant to retinal ganglion cell damage in an experimental glaucoma model. Mol Vis 18:1093–1106

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Shareef SR, Garcia-Valenzuela E, Salierno A, Walsh J, Sharma SC (1995) Chronic ocular hypertension following episcleral venous occlusion in rats. Exp Eye Res 61:379–382

    Article  PubMed  CAS  Google Scholar 

  86. Kipfer-Kauer A, McKinnon SJ, Frueh BE, Goldblum D (2010) Distribution of amyloid precursor protein and amyloid-β in ocular hypertensive C57BL/6 mouse eyes. Curr Eye Res 35:828–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Agar A, Li S, Agarwal N, Coroneo MT, Hill MA (2006) Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res 1086:191–200

    Article  PubMed  CAS  Google Scholar 

  88. Liu Q, Ju WK, Crowston JG, Xie F, Perry G, Smith MA, Lindsey JD, Weinreb RN (2007) Oxidative stress is an early event in hydrostatic pressure-induced retinal ganglion cell damage. Invest Ophthalmol Vis Sci 48:4580–4589

    Article  PubMed  Google Scholar 

  89. Lei Y, Rajabi S, Pedrigi RM, Overby DR, Read AT, Ethier CR (2011) In vitro models for glaucoma research: effects of hydrostatic pressure. Invest Ophthalmol Vis Sci 52:6329–6339

    Article  PubMed  Google Scholar 

  90. You Y, Gupta VK, Li JC, Al-Adawy N, Klistorner A, Graham SL (2014) FTY720 protects retinal ganglion cells in experimental glaucoma. Invest Ophthalmol Vis Sci 55:3060–3066

    Article  PubMed  CAS  Google Scholar 

  91. Reigada D, Lu W, Zhang M, Mitchell CH (2008) Elevated pressure triggers a physiological release of ATP from the retina: possible role for pannexin hemichannels. Neuroscience 157:396–404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ishikawa M, Yoshitomi T, Zorumski CF, Izumi Y (2010) Effects of acutely elevated hydrostatic pressure in a rat ex vivo retinal preparation. Invest Ophthalmol Vis Sci 51:6414–6423

    Article  PubMed  PubMed Central  Google Scholar 

  93. McKinnon SJ, Schlamp CL, Nickells RW (2009) Mouse models of retinal ganglion cell death and glaucoma. Exp Eye Res 88:816–824

    Article  PubMed  CAS  Google Scholar 

  94. Johnson TV, Tomarev SI (2010) Rodent models of glaucoma. Brain Res Bull 81:349–358

    Article  PubMed  Google Scholar 

  95. Zecha JA, Raber-Durlacher JE, Nair RG, Epstein JB, Elad S, Hamblin MR, Barasch A, Migliorati CA, Milstein DM, Genot MT, Lansaat L, van der Brink R, Arnabat-Dominguez J, van der Molen L, Jacobi I, van Diessen J, de Lange J, Smeele LE, Schubert MM, Bensadoun RJ (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24:2793–2805

    Article  PubMed  PubMed Central  Google Scholar 

  96. Morries LD, Cassano P, Henderson TA (2015) Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatr Dis Treat 11:2159–2175

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Arany PR (2016) Craniofacial wound healing with photobiomodulation therapy: new insights and current challenges. J Dent Res 95:977–984

    Article  PubMed  CAS  Google Scholar 

  98. Bordvik DH, Haslerud S, Naterstad IF, Lopes-Martins RAB, Leal Junior ECP, Bjordal JM, Joensen J (2017) Penetration time profiles for two class 3B lasers in in situ human achilles at rest and stretched. Photomed Laser Surg 35:546–554

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adenilson de Souza da Fonseca.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paiva, A.d.M., da Fonseca, A.d. Could adverse effects and complications of selective laser trabeculoplasty be decreased by low-power laser therapy?. Int Ophthalmol 39, 243–257 (2019). https://doi.org/10.1007/s10792-017-0775-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-017-0775-0

Keywords

Navigation