Skip to main content

Advertisement

Log in

Histopathological and ophthalmoscopic evaluation of apocynin on experimental proliferative vitreoretinopathy in rabbit eyes

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

The aim of the current study was to evaluate the effect of apocynin (APO) on the development of proliferative vitreoretinopathy (PVR). New Zealand-type male rabbits were randomly grouped into three as follows: (1) Sham group rabbits which were applied intraperitoneal (i.p.) vehicle without PVR; (2) PVR group rabbits where PVR was created and an i.p. vehicle was administered for 21 successive days; (3) PVR + APO group rabbits where PVR was created and i.p. APO was administered for 21 successive days. Fundus examination was conducted with an indirect ophthalmoscope before starting the experiments and at each visit afterwards. At the end of the work, the rabbits were sacrificed under high-dose anesthesia and then eye tissues were taken for histopathological analyses. In the PVR + APO group, histopathologic and ophthalmoscopic examination revealed significant decrease in PVR formation. As the result, it has been observed that APO at least partially inhibits PVR formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. The Retina Society Terminology Committee (1983) The classification of retinal detachment with proliferative vitreoretinopathy. Ophthalmology 90:121–125

    Article  Google Scholar 

  2. Weller M, Wiedemann P, Heimann K (1990) Proliferative vitreoretinopathy—is it anything more than wound healing at the wrong place? (review). Int Ophthalmol 14(2):105–117

    Article  CAS  PubMed  Google Scholar 

  3. Charteris DG (1995) Proliferative vitreoretinopathy: pathobiology, surgical management and adjunctive treatment. Br J Ophthalmol 79:953–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Araiz JJ, Refojo MF, Arroyo MH, Leong FL, Albert DM, Tolentino FI (1993) Antiproliferative effect of retinoic acid in intravitreous silicone oil in an animal model of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 34:522–530

    CAS  PubMed  Google Scholar 

  5. Blumenkranz MS, Hernandez E, Ophir A, Norton EWD (1984) 5-Fluorouracil: new applications in complicated retinal detachment for an established antimetabolite. Ophthalmology 91:122–130

    Article  CAS  PubMed  Google Scholar 

  6. Berman DH, Gombos GM (1989) Proliferative vitreoretinopathy: does low-dose colchicine have an inhibitory effect? A controlled study in humans. Ophthalmic Surg 20:268–272

    CAS  PubMed  Google Scholar 

  7. Berger AS, Cheng CK, Pearson PA, Ashton P, Crooks PA, Cynkowski T et al (1996) Intravitreal sustained release corticosteroid-5-fluorouracil conjugate in the treatment of experimental proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 37:2318–2325

    CAS  PubMed  Google Scholar 

  8. Simonyi A, Serfozo P, Lehmidi TM, Cui J, Gu Z, Lubahn DB et al (2011) The neuroprotective effects of apocynin. Front Biosci (Elite Edition) 4(1):2183–2193

    Google Scholar 

  9. El-Sawalhi MM, Ahmed LA (2014) Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact 207:58–66

    Article  CAS  PubMed  Google Scholar 

  10. Ozbek O, Altintas R, Polat A, Vardi N, Parlakpinar H, Sagir M et al (2015) The protective effect of apocynin on testicular ischemia-reperfusion injury. J Urol 193:1417–1422

    Article  CAS  PubMed  Google Scholar 

  11. Al-Shabrawey M, Bartoli M, El-Remessy AB, Platt DH, Matragoon S, Behzadian MA et al (2005) Inhibition of NAD(P)H oxidase activity blocks vascular endothelial growth factor overexpression and neovascularization during ischemic retinopathy. Am J Pathol 167(2):599–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. ZengH DingM, ChenXX LuQ (2014) Microglial NADPH oxidase activation mediates rod cell death in the retinal degeneration in rd mice. Neuroscience 275(5):54–61

    Article  Google Scholar 

  13. Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of sites for implants. Int J Oral Maxillofac Implants 14:529–535

    CAS  PubMed  Google Scholar 

  14. Machemer R, Aaberg TM, Freeman HM, Irvine AR, Lean JS, Michels RM (1991) An updated classification of retinal detachment with proliferative vitreoretinopathy. Am J Ophthalmol 112(2):159–165

    Article  CAS  PubMed  Google Scholar 

  15. Fastenberg DM, Diddie KR, Sorgente N, Ryan SJ (1982) A comparison of different cellular inocula in an experimental model of massive periretinal proliferation. Am J Ophthalmol 93:559–564

    Article  CAS  PubMed  Google Scholar 

  16. Pastor JC (1998) Proliferative vitreoretinopathy: an overview. Surv Ophthalmol 43(1):3–18

    Article  CAS  PubMed  Google Scholar 

  17. Wiedemann P (1992) Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy and retinal degeneration. Surv Ophthalmol 36:373–384

    Article  CAS  PubMed  Google Scholar 

  18. Johnston R (1988) Immunology: monocytes and macrophages. N Engl J Med 318:747–752

    Article  PubMed  Google Scholar 

  19. Wilkins RB, Kulwin DR (1979) Wound healing. Ophthalmology 86:507–510

    Article  CAS  PubMed  Google Scholar 

  20. Ryan SJ (1993) Traction retinal detachment. XLIX Edward Jackson Memorial Lecture. Am J Ophthalmol 115:1–20

    Article  CAS  PubMed  Google Scholar 

  21. Weller M, Wiedemann P, Heimann K (1990) Proliferative vitreoretinopathy. Is it anything more than wound healing at the wrong place? Int Ophthalmol 14:105–117

    Article  CAS  PubMed  Google Scholar 

  22. Yang CS, Khawly JA, Hainsworth DP, Chen SN, Ashton P, Guo H et al (1998) An intravitreal sustained-release triamcinolone and 5-fluorouracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol 116(1):69–77

    Article  CAS  PubMed  Google Scholar 

  23. Chandler DB, Hida T, Sheta S, Proia AD, Machemer R (1987) Improvement in efficacy of corticosteroid therapy in an animal model of proliferative vitreoretinopathy by pretreatment. Graefes Arch Clin Exp Ophthalmol 225:259–265

    Article  CAS  PubMed  Google Scholar 

  24. Arroyo MH, Refojo MF, Araiz JJ, Tolentino FI, Cajita VN, Elner VM (1993) Silicone oil as a delivery vehicle for BCNU in rabbit proliferative vitreoretinopathy. Retina 13(3):245–250

    Article  CAS  PubMed  Google Scholar 

  25. Daniels S, Coonley K, Yoshizumi M (1990) Taxol treatment of experimental proliferative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol 228:513–516

    Article  CAS  PubMed  Google Scholar 

  26. Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA (1989) Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor-b, interleukin-1, and prostaglandin-E2. Proc Natl Acad Sci USA 86:3803–3807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nomoto A, Mutoh S, Hagihara H, Yamaguchi I (1988) Smooth muscle cell migration induced by inflammatory cell products and its inhibition by a potent calcium antagonist, nilvadipine. Atherosclerosis 72:213–219

    Article  CAS  PubMed  Google Scholar 

  28. Monaghan-Benson E, Hartmann J, Vendrov AE, Budd S, Byfield G, Parker A et al (2010) The role of vascular endothelial growth factor-induced activation of NADPH oxidase in choroidal endothelial cells and choroidal neovascularization. Am J Pathol 177(4):2091–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Philippens IH, Wubben JA, Finsen B, ‘t Hart BA (2013) Oral treatment with the NADPH oxidase antagonist apocynin mitigates clinical and pathological features of parkinsonism in the MPTP marmoset model. J Neuroimmune Pharmacol 8(3):715–726

    Article  PubMed  Google Scholar 

  30. Wang H, Han X, Wittchen ES, Hartnett ME (2016) TNF-α mediates choroidal neovascularization by upregulating VEGF expression in RPE through ROS-dependent β-catenin activation. Mol Vis 22(3):116–128

    PubMed  PubMed Central  Google Scholar 

  31. Wang H, Fotheringham L, Wittchen ES, Hartnett ME (2015) Rap1 GTPase inhibits tumor necrosis factor-α-induced choroidal endothelial migration via NADPH oxidase- and NF-κB-dependent activation of Rac1. Am J Pathol 185(12):3316–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vaziri K, Schwartz SG, Relhan N, Kishor KS, Flynn HW Jr (2015) New therapeutic approaches in diabetic retinopathy. Rev Diabet Stud 12(1–2):196–210

    Article  PubMed  Google Scholar 

  33. Wang H, Hartnett ME (2016) Regulation of signaling events involved in the pathophysiology of neovascular AMD. Mol Vis 22(27):189–202

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kilic T, Parlakpinar H, Taslidere E, Yildiz S, Polat A, Vardi N et al (2015) Protective and therapeutic effect of apocynin on bleomycin-induced lung fibrosis in rats. Inflammation 38(3):1166–1180

    Article  CAS  PubMed  Google Scholar 

  35. Cagin YF, Erdogan MA, Sahin N, Parlakpinar H, Atayan Y, Polat A et al (2015) Protective effects of apocynin on cisplatin-induced hepatotoxicity in rats. Arch Med Res 46(7):517–526

    Article  CAS  PubMed  Google Scholar 

  36. Cagin YF, Parlakpinar H, Polat A, Vardi N, Atayan Y, Erdogan MA et al (2016) The protective effects of apocynin on ionizing radiation-induced intestinal damage in rats. Drug Dev Ind Pharm 42(2):317–324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Atabey Ozer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, M.A., Polat, N., Ozen, S. et al. Histopathological and ophthalmoscopic evaluation of apocynin on experimental proliferative vitreoretinopathy in rabbit eyes. Int Ophthalmol 37, 599–605 (2017). https://doi.org/10.1007/s10792-016-0318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0318-0

Keywords

Navigation