Skip to main content

Advertisement

Log in

Trans-scleral diode laser cyclophotocoagulation for refractory glaucoma after high-risk penetrating keratoplasty

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

To analyze the intraocular pressure reduction, number of anti-glaucoma medications needed, and post-operative complications of trans-scleral diode laser cyclophotocoagulation (DCPC) in patients with high-risk penetrating keratoplasty (PKP) and secondary refractory glaucoma. Prospective interventional, longitudinal, non-comparative series of cases, including 16 eyes of 15 patient’s post-PKP on maximal anti-glaucoma medical therapy with intraocular pressures above 22 mmHg. All patients received 18 shots, 360° peri-limbal (avoiding the long posterior ciliary nerves and arteries at 3 and 9 o’clock positions) of trans-scleral DCPC (2000 mW, time: 2.0 s/shot). There was a 55.5 % reduction (total of 14.0 mmHg) of the mean pre-operative IOP (31.5 mmHg) after the first diode laser application (p = 0.0020). Re-treatment was required in 31.2 % of eyes over a mean period of 10.7 months. In these five eyes, the mean pre-operative IOP was 40.4 mmHg, which decreased to 15.0 mmHg post-therapy, and a mean IOP reduction of 25.4 mmHg (p = 0.0218). There was a 51.0 % reduction in the mean number of medications used after the first, and a 57.1 % reduction after a second laser application. The incidence of failure (IOP ≥ 22 mmHg or need of additional medical therapy) from initial intervention to loss of follow-up was 1.3 % per person-month. DCPC effectively reduces the intraocular pressure and the number of anti-glaucoma medications with few complications in patients after high-risk PKP and secondary glaucoma. Only, one-third of the eyes needed a second intervention to control the intraocular pressure. Post-DCPC complications were limited to phthisis bulbi and endothelial dysfunction, one eye each. Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ayyala RS (2000) Penetrating keratoplasty and glaucoma. Surv Ophthalmol 45:91–105

    Article  CAS  PubMed  Google Scholar 

  2. Wilson SE, Kaufman HE (1990) Graft failure after penetrating keratoplasty. Surv Ophthalmol 34:325–356

    Article  CAS  PubMed  Google Scholar 

  3. Wood TO, West C, Kaufman HE (1972) Control of intraocular pressure in penetrating keratoplasty. Am J Ophthalmol 74:724–728

    Article  CAS  PubMed  Google Scholar 

  4. Al-Mohaimeed M, Al-Shahwan S, Al-Torbak A, Wagoner MD (2007) Escalation of glaucoma therapy after penetrating keratoplasty. Ophthalmology 114:2281–2286

    Article  PubMed  Google Scholar 

  5. Dada T, Aggarwal A, Minudath KB, Vanathi M, Choudhary S, Gupta V et al (2008) Post-penetrating keratoplasty glaucoma. Indian J Ophthalmol 56:269–277

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sihota R, Sharma N, Panda A, Aggarwal HC, Singh R (1998) Post-penetrating keratoplasty glaucoma: risk factors, management and visual outcome. Aust N Z J Ophthalmol 26:305–309

    Article  CAS  PubMed  Google Scholar 

  7. Karesh JW, Nirankari VS (1983) Factors associated with glaucoma after penetrating keratoplasty. Am J Ophthalmol 96:160–164

    Article  CAS  PubMed  Google Scholar 

  8. Yildirim N, Gursoy H, Sahin A, Ozer A, Colak E (2011) Glaucoma after penetrating keratoplasty: incidence, risk factors, and management. J Ophthalmol 2011:1–6

    Article  Google Scholar 

  9. Oruçoglu F, Blumenthal EZ, Frucht-Pery J, Solomon A (2014) Risk factors and incidence of ocular hypertension after penetrating keratoplasty. J Glaucoma 23:599–605

    Article  PubMed  Google Scholar 

  10. Leung EW, Medeiros FA, Weinreb RN (2008) Prevalence of ocular surface disease in glaucoma patients. J Glaucoma 17:350–355

    Article  PubMed  Google Scholar 

  11. Goldberg I, RD F, Aihara M, Lerner FS, Barabino S, Baudouin C, Fetchner RD, Lerner SF, Pflugfelder SC (2010) Ocular surface disease in patients with glaucoma. ALCON, Inc. Jul 21, pp 1–20

  12. García-Fejioo J, Sampaolesi JR (2012) A multicenter evaluation of ocular surface disease prevalence in patients with glaucoma. Clin Ophthalmol 6:441–446

    Article  Google Scholar 

  13. Horsley MB, Kahook MY (2009) Effects of prostaglandin analog therapy on the ocular surface of glaucoma patients. Clin Ophthalmol 3:291–295

    CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Brien TP, Springs CL (2008) Addressing ocular surface disease in the glaucoma population. Ophthalmology Times, 1st edn, July 1; 33,13, ProQuest, pp 1–12

  15. Skalicky SE, Goldberg I, McCluskey P (2012) Ocular surface disease and quality of life in patients with glaucoma. Am J Ophthalmol 153:1–9

    Article  PubMed  Google Scholar 

  16. Gaasterland DE, Pollack IP (1992) Initial experience with a new method of laser transscleral cyclophotocoagulation for ciliary ablation in severe glaucoma. Trans Am Ophthalmol Soc 90:225–226

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vernon SAS, Koppens JMJ, Menon GJG, Negi AKA (2006) Diode laser cycloablation in adult glaucoma: long-term results of a standard protocol and review of current literature. Clin Exp Ophthalmol 34:411–420

    Article  Google Scholar 

  18. Iliev ME, Gerber S (2007) Long-term outcome of trans-scleral diode laser cyclophotocoagulation in refractory glaucoma. Br J Ophthalmol 91:1631–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hennis HL, Stewart WC (1992) Semiconductor diode laser transscleral cyclophotocoagulation in patients with glaucoma. Am J Ophthalmol 113:81–85

    Article  CAS  PubMed  Google Scholar 

  20. Shah P, Lee GA, Kirwan JK, Bunce C, Bloom PA, Ficker LA, Khaw PT (2001) Cyclodiode photocoagulation for refractory glaucoma after penetrating keratoplasty. Ophthalmology 108:1986–1991

    Article  CAS  PubMed  Google Scholar 

  21. Ataullah S, Biswas S, Artes PH, O’Donoghue E, Ridgway AEA, Spencer AF (2002) Long term results of diode laser cycloablation in complex glaucoma using the Zeiss Visulas II system. Br J Ophthalmol 86:39–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tzamalis A, Pham D-T, Wirbelauer C (2011) Diode laser cyclophotocoagulation versus cyclocryotherapy in the treatment of refractory glaucoma. Eur J Ophthalmol 21:589–596

    Article  PubMed  Google Scholar 

  23. Fong AW, Lee GA, O’Rourke P, Thomas R (2011) Management of neovascular glaucoma with transscleral cyclophotocoagulation with diode laser alone versus combination transscleral cyclophotocoagulation with diode laser and intravitreal bevacizumab. Clin Exp Ophthalmol 39:318–323

    Article  Google Scholar 

  24. Hawkins TA, Stewart WC (1993) One-year results of semiconductor transscleral cyclophotocoagulation in patients with glaucoma. Arch Ophthalmol 111:488–491

    Article  CAS  PubMed  Google Scholar 

  25. Espino-Barros-Palau A, Rodríguez-García A (2012) Trans-scleral diode laser cyclophotocoagulation in the management of diabetic neovascular glaucoma. Rev Mex Oftalmol 86:12–19

    Google Scholar 

  26. Brancato R, Leoni G, Trabucchi G, Cappellini A (1991) Histopafhology of continuous wave neodymium: yttrium aluminum garnet and diode laser contact transscleral lesions in rabbit ciliary body. Invest Ophthalmol Vis Sci 32:1586–1592

    CAS  PubMed  Google Scholar 

  27. Peyman GA, Naguib KS, Gaasterland D (1990) Trans-scleral application of a semiconductor diode laser. Lasers Surg Med 10:569–575

    Article  CAS  PubMed  Google Scholar 

  28. Threlkeld AB, Johnson MH (1999) Contact transscleral diode cyclophotocoagulation for refractory glaucoma. J Glaucoma 8:3–7

    Article  CAS  PubMed  Google Scholar 

  29. Yap-Veloso MI, Simmons RB, Echelman DA, Gonzales TK, Veira WJ, Simmons RJ (1998) Intraocular pressure control after contact transscleral diode cyclophotocoagulation in eyes with intractable glaucoma. J Glaucoma 7:319–328

    Article  CAS  PubMed  Google Scholar 

  30. Leng F, Liu P, Li H, Zhang J (2011) Long-term topical antiglaucoma medications cause enhanced Tenon’s capsule fibroblast proliferation and abnormal TGF-β and MMP expressions: potential effects on glaucoma filtering surgery. Curr Eye Res 36:301–309

    Article  CAS  PubMed  Google Scholar 

  31. Iwao K, Inatani M, Ogata-Iwao M, Takihara Y, Tanihara H (2009) Restricted post-trabeculectomy bleb formation by conjunctival scarring. Graefe’s Arch Clin Exp Ophthalmol 247:1095–1101

    Article  Google Scholar 

  32. Lim KS, Allan BD, Lloyd AW, Muir A, Khaw PT (1998) Glaucoma drainage devices; past, present, and future. Br J Ophthalmol 82:1083–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Malik R, Ellingham RB, Suleman H, Morgan WH (2006) Refractory glaucoma-tube or diode? Clin Exp Ophthalmol 34:771–777

    Article  Google Scholar 

  34. Hill JC (2002) High risk corneal grafting. Br J Ophthalmol 86:945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Csoter DJ, Jessup CF, Williams KA (2015) Mechanisms of corneal allograft rejection and the development of new therapies. Cornea and external disease. Springer, New York, pp 13–23

    Google Scholar 

  36. Parihar JKS, Vats DP, Maggon R, Mathur V, Singh A, Mishra SK (2009) The efficacy of Ahmed glaucoma valve drainage devices in cases of adult refractory glaucoma in Indian eyes. Indian J Ophthalmol 57:345–350

    Article  PubMed  PubMed Central  Google Scholar 

  37. Association WM (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194

    Article  Google Scholar 

  38. Olivier MMG (2012) Current options for cyclophotocoagulation. An overview of transscleral diode photocoagulation and endocyclophotocoagulation, Glaucoma Today, Apr 10 (March/April), pp 30–34

  39. Rumelt S (2011) Glaucoma in cases of penetrating keratoplasty, lamellar procedures and keratoprosthesis. In: Rumelt S (ed) Glaucoma basic and clinical concepts (Chap. 30). INTECH, Rijeka, pp 569–590

    Chapter  Google Scholar 

  40. Gupta P, Sharma A, Ichhpujani P (2014) Post penetrating keratoplasty glaucoma—a review. Nepal J Ophthalmol 6:80–90

    CAS  PubMed  Google Scholar 

  41. McDonnell PJ, Robin JB, Schanzlin DJ, Minckler D, Baerveldt G, Smith RE, Heuer D (1988) Molteno implant for control of glaucoma in eyes after penetrating keratoplasty. Ophthalmology 95:364–369

    Article  CAS  PubMed  Google Scholar 

  42. Chang SHL, Chen Y-C, Li C-Y, Wu S-C (2004) Contact diode laser transscleral cyclophotocoagulation for refractory glaucoma: comparison of two treatment protocols. Can J Ophthalmol 39:511–516

    Article  PubMed  Google Scholar 

  43. Noureddin BN, Zein W, Haddad C, Ma’luf R, Bashshur Z (2005) Diode laser transcleral cyclophotocoagulation for refractory glaucoma: a 1 year follow-up of patients treated using an aggressive protocol. Eye (London) 20:329–335

    Article  Google Scholar 

  44. Youn J, Cox TA, Herndon LW, Allingham RR (1998) A Clinical comparison of transscleral cyclophotocoagulation with neodymium: YAG and semiconductor diode lasers. Am J Ophthalmol 126:640–647

    Article  CAS  PubMed  Google Scholar 

  45. Rotchford AP, Jayasawal R, Madhusudhan S, Ho S, King AJ, Vernon SA (2010) Transscleral diode laser cycloablation in patients with good vision. Br J Ophthalmol 94:1180–1183

    Article  CAS  PubMed  Google Scholar 

  46. Khan MT, Qazi ZA (2007) Transscleral diode laser cyclophotocoagulation for the treatment of refractory glaucoma. Pak J Ophthalmol 23:204–208

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Rodríguez-García.

Ethics declarations

Conflict of interest

The authors have no propriety or financial interest in any of the laser devices or materials used for this study.

Informed consent

All patients included in the study read and signed an informed consent for laser treatment previously approved by the Ethics and Research Committees of our institution in compliance with the ethical principles of the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-García, A., González-González, L.A. & Carlos Alvarez-Guzmán, J. Trans-scleral diode laser cyclophotocoagulation for refractory glaucoma after high-risk penetrating keratoplasty. Int Ophthalmol 36, 373–383 (2016). https://doi.org/10.1007/s10792-015-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-015-0130-2

Keywords

Navigation