Skip to main content

Advertisement

Log in

The anti-inflammatory effects of minocycline on lipopolysaccharide-induced paw oedema in rats: a histopathological and molecular study

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Minocycline is a semi-synthetic antimicrobial agent with claimed anti-inflammatory properties reported from different experimental models. This study was aimed to evaluate the anti-inflammatory effects of minocycline, compared to the actions of two common anti-inflammatory agents, on lipopolysaccharide (LPS)-induced paw oedema through some clinical, histopathological, haematological and molecular analyses. Forty-eight rats were divided into eight groups (n = 6). In control group (Ctrl), each animal was injected with normal saline into its sub-plantar region of hind paw. In groups 2–7, hind paw oedema was induced by injection of LPS. One hour before injections, groups 1 (Ctrl) and 2 (LPS) were treated orally with distilled water, 3 and 4 with methylprednisolone (Pred) and meloxicam (Melo) and 5–7 with minocycline in doses of 50, 150 and 450 mg/kg (M50, M150 and M450, respectively). The 8th group (MC) was given minocycline (150 mg/kg) orally and normal saline was injected into sub-plantar region. Paw swelling and body temperature were assessed at 0, 2, 4, 6 and 24 h post-injections. At 24 h, samples of blood and liver, kidney, spleen and hind paw tissues were taken for haematological and histopathological examinations. Some samples of the paw were also obtained for molecular analysis of some inflammatory-related cytokines at mRNA level. Paw swelling and body temperature increased in all LPS-injected groups 2 h post-injection. In LPS group, they remained significantly increased up to 24 h; however, these parameters decreased to normal in Pred, Melo and all minocycline groups. The histological findings showed mild-to-moderate signs of inflammation in tissue samples of groups 2–6, but not in group M450. Additionally, gene expression of pro-inflammatory cytokines (IL-1β and IL-6) increased significantly in LPS group compared to other groups. In conclusion, this study supports the role of minocycline as an anti-inflammatory agent with effects comparable to those of meloxicam and methylprednisolone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

References

  • Abcouwer SF, Lin CM, Shanmugam S et al (2013) Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. Neuroinflammation 10:149. https://doi.org/10.1186/1742-2094-10-149

    Article  CAS  Google Scholar 

  • Aladakatti SV, Patil PA, Vivek V (2008) Influence of tetracyclines on inflammation and their interaction with aspirin in male Wistar rats. Pharmacologyonline 3:808–819

    Google Scholar 

  • Aslam R, Speck ER, Kim M et al (2006) Platelet toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumour necrosis factor-alpha production in vivo. Blood 107:637–641. https://doi.org/10.1182/blood-2005-06-2202

    Article  CAS  PubMed  Google Scholar 

  • Ataie-Kachoie P, Badar S, Morris DL et al (2013) Minocycline targets the NF-κB nexus through suppression of TGF-β1-TAK1-IκB signalling in ovarian cancer. Mol Cancer Res 11(10):1279–1291

    CAS  PubMed  Google Scholar 

  • Bahari A, Mehrzad J, Mahmoodi M et al (2014) Cytochrome P450 isoforms are differently up-regulated in aflatoxin B1-exposed human lymphocytes and monocytes. Immunopharmacol Immunotoxicol 36:1–10

    CAS  PubMed  Google Scholar 

  • Bastos LFS, Merlo LA, Rocha LTS et al (2007) Characterization of the antinociceptive and anti-inflammatory activities of doxycycline and minocycline in different experimental models. Eur J Pharmacol 576(1–3):171–179

    CAS  PubMed  Google Scholar 

  • Baumgarten G, Knuefermann P, Nozaki N et al (2001) In vivo expression of pro-inflammatory mediators in the adult heart after endotoxin administration: the role of Toll-like receptor-4. J Infect Dis 183:1617–1624

    CAS  PubMed  Google Scholar 

  • Blum D, Chtarto A, Tenenbaum L et al (2004) Clinical potential of minocycline for neurodegenerative disorders. Neurobiol Dis 17:359–366

    CAS  PubMed  Google Scholar 

  • Buters TP, Hameeteman PW et al (2021) Cellular and molecular effects of corticosteroids on the response to intradermal lipopolysaccharide administration in healthy volunteers. Clin Pharmacol Therap 111(4):964–971

    Google Scholar 

  • Chen CH, Tsai PS, Huang CJ (2013) Minocycline ameliorates lung and liver dysfunction in a rodent model of hemorrhagic shock/resuscitation plus abdominal compartment syndrome. J Surg Res 180:301–309

    CAS  PubMed  Google Scholar 

  • Chow JC, Young DW, Golenbock DT (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    CAS  PubMed  Google Scholar 

  • de Meijer A, Vollaard H, de Metz M et al (1999) Meloxicam 15 mg/day spares platelet function in healthy volunteers. Clin Pharmacol Ther 66:425430

    Google Scholar 

  • Dorresteijn MJ, van Eijk LT, Netea MG, et al (2005) Iso-osmolar prehydration shifts the cytokine response towards a more anti-inflammatory balance in human endotoxemia. J Endotoxin Res 11(5):287–293. https://doi.org/10.1179/096805105X58715

    Article  CAS  PubMed  Google Scholar 

  • Dunston CR, Griffiths HR, Lambert PA et al (2011) Proteomic analysis of the anti-inflammatory action of minocycline. Proteomics 11:42–51

    CAS  PubMed  Google Scholar 

  • Engelhardt G, Homma D, Schnitzler C (1995) Meloxicam: a potent inhibitor of adjuvant arthritis in the Lewis rat. Inflamm Res 44:548–555

    CAS  PubMed  Google Scholar 

  • Er A, Coskun D, Bahcivan E, Dik B (2020) Effect of doxycycline and meloxicam on cytokines, brain-derived neurotrophic factor, matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-3 and cyclooxygenase-2 in brain. Iran J Basic Med Sci 23:1328–1334. https://doi.org/10.22038/ijbms.2020.45193.10527

    Article  PubMed  PubMed Central  Google Scholar 

  • Esser RE, Anderle SK, Chetty C (1986) Comparison of inflammatory reactions induced by intra-articular injections of bacterial cell wall polymers. Am J Pathol 122(2):323–334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Kapus A, Marsden PA et al (2002) Regulation of toll-like receptor 4 expression in the lung following hemorrhagic shock and lipopolysaccharide. J Immunol 168(10):5252–5259. https://doi.org/10.4049/jimmunol.168.10.5252

    Article  CAS  PubMed  Google Scholar 

  • Fang T, Wu X, Cao W (2017) Effects of dietary fibre on the antioxidant capacity, immune status, and antioxidant-relative signalling molecular gene expression in rat organs. RSC Adv 7:19611–19620

    CAS  Google Scholar 

  • Gaertner F, Massberg S (2019) Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immuno 19:747–760. https://doi.org/10.1038/s41577-019-0202-z

    Article  CAS  Google Scholar 

  • Gao H, Yang T, Chen X, Song Y (2021) Changes of lipopolysaccharide induced acute kidney and liver injuries in rats based on metabolomics analysis. J Inflamm Res 14:1807–1825. https://doi.org/10.2147/JIR.S306789

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia FJM, Gonzalez-De Cara C, Aguilera- Aguilera R et al (2020) Meloxicam ameliorates the systemic inflammatory response syndrome associated with experimentally induced endotoxemia in adult donkeys. J Vet Intern Med 34(4):1631–1641

    Google Scholar 

  • Garcia-Martinez EM, Sanz-Blasco S, Karachitos A et al (2010) Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 79:239–250

    CAS  PubMed  Google Scholar 

  • Garrido-Mesa N, Zarzuelo A, Galvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169:337–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Good M, Hussey DL (2003) Minocycline: stain devil? Br J Dermatol 149:237–239

    CAS  PubMed  Google Scholar 

  • Griffin MO, Fricovsky E, Ceballos G et al (2010) Tetracyclines: a pleiotropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol 299:C539–C548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harden LM, Rummel C, Laburn HP (2013) Critical role for peripherally-derived interleukin-10 in mediating the thermoregulatory manifestations of fever and hypothermia in severe forms of lipopolysaccharide-induced inflammation. Pflügers Archiv–eur J Physiol 466(7):1451–1466. https://doi.org/10.1007/s00424-013-1371-4

    Article  CAS  Google Scholar 

  • Hassan MH, Ghobara MM (2016) Antifibrotic effect of meloxicam in rat liver: Role of nuclear factor kappa B, proinflammatory cytokines, and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 389:971–983

    CAS  PubMed  Google Scholar 

  • Henry CJ, Huang Y, Wynne A (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behaviour, and anhedonia. Neuroinflammation 13(5):15. https://doi.org/10.1186/1742-2094-515

    Article  Google Scholar 

  • Hsieh CT, Lee YJ, Dai X (2018) Systemic lipopolysaccharide-induced pain sensitivity and spinal inflammation were reduced by minocycline in neonatal rats. Int J Mol Sci 19(10):2947. https://doi.org/10.3390/ijms19102947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TY, Chu HC, Lin YL (2009) Minocycline attenuates experimental colitis in mice by blocking expression of inducible nitric oxide synthase and matrix metalloproteinases. Toxicol Appl Pharmacol 237:69–82

    CAS  PubMed  Google Scholar 

  • Ilçe F, Gök G, Pandir D (2019) Acute effects of lipopolysaccharide (LPS) in kidney of rats and preventive role of vitamin E and sodium selenite. Hum and Exp Toxicol 38(5):547–560. https://doi.org/10.1177/0960327118817106

    Article  CAS  Google Scholar 

  • Ishikava Y, Kirikae T, Hirata M et al (1991) Local skin response in mice induced by a single intra dermal injection of bacterial lipopolysaccharide and lipid A. Infect Immun 59:1954–1960

    Google Scholar 

  • Kobayashi K, Imagama S, Ohgomori T (2013) Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis 4:e525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kox M, Van Eijk LT, Zwaag J et al (2014) Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. Pro Nat Acad Sci 111:7379–7384. https://doi.org/10.1073/pnas.1322174111

    Article  CAS  Google Scholar 

  • Lang CH, Silvis C, Deshpande N (2003) Endotoxin stimulates in vivo expression of inflammatory cytokines tumor necrosis factor alpha, interleukin-1beta, -6, and high-mobility-group protein-1 in skeletal muscle. Shock 19(6):538–546

    CAS  PubMed  Google Scholar 

  • Leigh SJ, Kaakoush NO, Westbrook RF et al (2020) Minocycline-induced microbiome alterations predict cafeteria diet-induced spatial recognition memory impairments in rats. Transl Psychiatry 10:92. https://doi.org/10.1038/s41398-020-0774-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite LM, Carvalho AGG, Ferreira PLFT (2011) Anti-inflammatory properties of doxycycline and minocycline in experimental models: an in vivo and in vitro comparative study. Inflammopharmacology 19:99–110

    CAS  PubMed  Google Scholar 

  • LeMay LG, Otterness IG, Vander AJ et al (1990) In vivo evidence that the rise in plasma IL 6 following injection of a fever-inducing dose of LPS is mediated by IL 1β. Cytokine 2(3):199–204

    CAS  PubMed  Google Scholar 

  • Li Y, Li T, Qi H et al (2015) Minocycline protects against hepatic ischemia/reperfusion injury in a rat model. Biomed Rep 3(1):19–24

    PubMed  Google Scholar 

  • Li H, Liao T, Debowski AW et al (2016) Lipopolysaccharide structure and biosynthesis in Helicobacter pylori. Helicobacter 21(6):445–461. https://doi.org/10.1111/hel.12301

    Article  CAS  PubMed  Google Scholar 

  • Li C, Li J, Ni H (2020a) Crosstalk between platelets and microbial pathogens. Front Immunol 11:1962. https://doi.org/10.3389/fimmu.2020.01962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Qin Y, Chen Y et al (2020b) Mechanisms of the lipopolysaccharide-induced inflammatory response in alveolar epithelial cell/macrophage co-culture. Exp Ther Med 20(5):76. https://doi.org/10.3892/etm

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao YT, Wang SM, Chen SH et al (2019) Anti-inflammatory and antiviral effects of minocycline in enterovirus 71 infections. Biomed Pharmacother 118:109271. https://doi.org/10.1016/j.biopha

    Article  CAS  PubMed  Google Scholar 

  • Lima MB, Gama LA, Hauschildt AT et al (2017) Gastrointestinal motility, mucosal mast cell, and intestinal histology in rats: effect of prednisone. Biomed Res Int. https://doi.org/10.1155/2017/4637621

    Article  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C (T) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Long NC, Otterness I, Kunkel SL et al (1990) Roles of interleukin 1b and tumor necrosis factor in lipopolysaccharide fever in rats. Am J Physiol 259:724–728

    Google Scholar 

  • Luna LG (1968) Manual of histologic staining methods of the armed forces institute of pathology. McGraw Hill, New York

    Google Scholar 

  • Matsumura T, Ito A, Takii T et al (2000) Endotoxin and cytokine Regulation of toll-like receptor TLR2 and TLR4 gene expression in murine Liver and hepatocytes. J Interferon Cytokine Res 20:915–921

    CAS  PubMed  Google Scholar 

  • Mehrzad J, Malvandi AM, Alipour M et al (2017) Environmentally relevant level of aflatoxin B1 elicits toxic pro-inflammatory response in murine CNS-derived cells. Toxicol Lett 279:96–106. https://doi.org/10.1016/j.toxlet.2017.07.902

    Article  CAS  PubMed  Google Scholar 

  • Meuwissen N, Van Zundert J, Boer W et al (2013) Minocycline dose-dependently reduces neuropathic pain behavior in a rat chronic constriction injury model 14AP4-1. Eur J Anaesthesiol 30:213–213. https://doi.org/10.1097/00003643-201306001-00665

    Article  Google Scholar 

  • Mohammadi A, Mehrzad J, Mahmoudi M et al (2014) Environmentally relevant level of aflatoxin B1 dysregulates human dendritic cells through signalling on key toll-like receptors. Int J Toxicol 33:175–186

    PubMed  Google Scholar 

  • Nagel S, Su Y, Horstmann S et al (2008) Minocycline and hypothermia for reperfusion injury after focal cerebral ischemia in the rat: effects on BBB breakdown and MMP expression in the acute and subacute phase. Brain Res 1188:198–206

    CAS  PubMed  Google Scholar 

  • Naseri M, Rezaeizadeh H, Mirghazanfari SM et al (2022) Anti-inflammatory activity of a natural herbal-marine drug (MS14 -SANT and SUSP) compared to sodium salicylate or methylprednisolone in a rat model for multiple sclerosis. Eur J Transl Myol 32(1):10169. https://doi.org/10.4081/ejtm.2022.10169

    Article  Google Scholar 

  • Naura AS, Kim H, Ju J et al (2013) Minocycline blocks asthma-associated inflammation in part by interfering with the T cell receptor nuclear factor κB GATA-3-IL-4 axis without a prominent effect on poly(ADP-ribose) polymerase. J Biol Chem 288:1458–1468

    CAS  PubMed  Google Scholar 

  • Nomura F, Akashi S, Sakao Y et al (2000) Cutting edge: Endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4expression. J Immunol 164(7):3476–3479. https://doi.org/10.4049/jimmunol.164.7.3476

    Article  CAS  PubMed  Google Scholar 

  • Panara MR, Renda G, Sciulli MG et al (1999) Dose-dependent inhibition of platelet cyclooxygenase-I and monocyte cyclooxygenase-2 by meloxicam in healthy subjects. Pharmacol Exp Ther 290:27iG280

    Google Scholar 

  • Peinnequin A, Mouret C, Birot O et al (2004) Rat proinflammatory cytokine and cytokine related mRNA quantification by real-time PCR using SYBR green. BMC Immunol 5:3. https://doi.org/10.1186/1471-2172-5-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Rassouli A, Shihmani B, Mehrzad J et al (2022) The immunomodulatory effect of minocycline on gene expression of inflammation related cytokines in lipopolysaccharide-treated human peripheral blood mononuclear cells. Anim Biotechnol 27:1–7. https://doi.org/10.1080/10495398

    Article  Google Scholar 

  • Roth J, Hübschle T, Ross UPG et al (2002) Influence of systemic treatment with cyclooxygenase inhibitors on lipopolysaccharide-induced fever and circulating levels of cytokines and cortisol in guinea-pigs. Pflügers Arch–eur J Physiol 443:411–417. https://doi.org/10.1007/s004240100718

    Article  CAS  Google Scholar 

  • Sapadin AN, Fleischmajer R (2006) Tetracyclines: non-antibiotic properties and their clinical implications. J Am Acad Dermatol 54:258–265

    PubMed  Google Scholar 

  • Seeley JJ, Ghosh S (2017) Molecular mechanisms of innate memory and tolerance to LPS. J Leukoc Biol 10:107–119

    Google Scholar 

  • Semple W, Aslam R, Kim M et al (2007) Platelet-bound lipopolysaccharide enhances Fc receptor-mediated phagocytosis of IgG-opsonized platelets. Blood 109:4803–4805. https://doi.org/10.1182/blood-2006-12-062695

    Article  CAS  PubMed  Google Scholar 

  • Shao B, Lu M, Katz SC et al (2007) A host lipase detoxifies bacterial lipopolysaccharides in the liver and spleen. J Biol Chem 282(18):13726–13735. https://doi.org/10.1074/jbc.m609462200

    Article  CAS  PubMed  Google Scholar 

  • Shelly ME (2016) NSAID analgesia for adult rodents SOP meloxicam (Metacam®). University of British Columbia Animal Care Guidelines SOP: TECH 19 – UBC ACC Metacam SOP.

  • Soory M (2008) A role for non-antimicrobial actions of tetracyclines in combating oxidative stress in periodontal and metabolic diseases: a literature review. Open Dent J 2:5–12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaki N, Orihuela-Campos RC, Fukui M et al (2016) Hydrogen-rich water intake accelerates oral palatal wound healing via activation of the Nrf2/antioxidant defense pathways in a rat model. Oxid Med Cell Longev 2016:5679040

    PubMed  Google Scholar 

  • Vajja BN, Juluri S, Kumari M et al (2004) Lipopolysaccharide-induced paw oedema model for detection of cytokine modulating anti-inflammatory agents. Intern Immunopharmacol 4:901–909

    CAS  Google Scholar 

  • Van der Poll T, Coyle SM, Barbosa K, et al (1996) Epinephrine inhibits tumor necrosis factor-alpha and potentiates interleukin-10 production during human endotoxemia. J Clin Invest 97:713–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yu P, Li Y, et al (2021) Early-released interleukin-10 significantly inhibits lipopolysaccharide-elicited neuroinflammation in vitro. Cells 10:2173. https://doi.org/10.3390/cells10092173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright F, Blanchette VS, Wang H et al (1996) Characterization of platelet-reactive antibodies in children with varicella associated acute immune thrombocytopenic purpura (ITP). Br J Haematol 95:145–152. https://doi.org/10.1046/j.1365-2141.1996.d01-1872.x

    Article  CAS  PubMed  Google Scholar 

  • Xiaodong YU, Wu XH, Du XW (2007) Protective effects of minocycline on renal ischemia-reperfusion injury in rats. J Chongqing Med Univ 32:1172–1174

    Google Scholar 

  • Yao P, Tan F, Gao H et al (2017) Effects of probiotics on Toll-like receptor expression in ulcerative colitis rats induced by 2,4,6-trinitro-benzene sulfonic acid. Mol Med Rep 15:1973–1980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yates DT, Löest CA, Ross TT et al (2011) Effects of bacterial lipopolysaccharide injection on white blood cell counts, haematological parameters, and serum glucose, insulin, and cortisol concentrations in ewes fed low- or high protein diets. J Anim Sci 89(12):4286–4293. https://doi.org/10.2527/jas.2011-3969

    Article  CAS  PubMed  Google Scholar 

  • Yoona SY, Patel D, Dougherty PM (2012) Minocycline blocks lipopolysaccharide induced hyperalgesia by suppression of microglia but not astrocytes. Neuroscience 221:214–224

    Google Scholar 

  • Yuan Z, Chen X, Yang W et al (2019) The anti-inflammatory effect of minocycline on endotoxin-induced uveitis and retinal inflammation in rats. Mol vis 25:359–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang C, Guan Z et al (2020) Beneficial effects of intrathecal injection of methylprednisolone against spinal cord injury in rats. Iran Red Crescent Med J 22(6):e97961

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank Dr. V. Siavoshi, Dr.H. Akbarein, and S. Yousefi for their assistance.

Funding

It is declared that a partial financial support for the PhD thesis of Basim Shihmani was made by Research Deputy, Faculty of Veterinary Medicine, University of Tehran.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design as well as material preparation, data collection and analysis. The first draft of the manuscript was written by BS, AR and SS and then all authors commented on the first draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Rassouli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by Research Committee including Ethics Committee of the Research Deputy, Faculty of Veterinary Medicine, University of Tehran (IACUC-approved project No.7506006/6/11).

Statement on welfare of the animals

This study was done according to the institutional principles and regulations on animal welfare and use.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shihmani, B., Rassouli, A., Mehrzad, J. et al. The anti-inflammatory effects of minocycline on lipopolysaccharide-induced paw oedema in rats: a histopathological and molecular study. Inflammopharmacol 31, 1913–1928 (2023). https://doi.org/10.1007/s10787-023-01236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01236-7

Keywords

Navigation