Skip to main content

Advertisement

Log in

Phytochemical analysis and antibacterial/antifungal activity of the essential oil of Phlomis olivieri Benth in Iran

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Phlomis olivieri Benth. is an aromatic plant endemic to Iran belonging to the Lamiaceae family. It is used to treat pain, stomach ache and common cold in Iranian traditional medicine. P. olivieri also has valuable biological properties including antioxidant, antimicrobial and analgesic ones. This was the first study designed to assess the quality, quantity and antimicrobial activity of Phlomis olivieri Benth. essential oil (POEO). Samples were randomly collected from flowering twigs of this species in three locations between Azeran and Kamoo in Kashan, Iran at peak flowering in June 2019. Water distillation extraction was used to obtain the POEO the quantity of which was calculated by weight. Gas chromatography coupled to mass spectrometry (GC/MS) was also used for POEO qualitative analysis, which revealed its chemical compounds and their percentages. Antimicrobial activity of POEO was also determined using the agar well diffusion method. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) were also measured using the broth microdilution method. The results of the quantitative and qualitative analysis showed that the POEO yield was ~ 0.2292% and its main chemical compounds included the sesquiterpenes germacrene D (26.43%), β-caryophyllene (20.72%), elixene (6.58%), β-trans-farnesene (6.17%), β-Cyclogermacrane (5.04%), germacrene B (4.73%), α-humulene (4.22%), and monoterpene α-pinene (3.22%). The agar diffusion method demonstrated the highest antimicrobial activity of POEO (MIC ~ 14.50 mm) was against the Gram-positive species Streptococcus pyogenes. The POEO also showed the strongest inhibitory and lethal activity against the gram-negative bacterial species Pseudomonas aeruginosa (MIC < 62.50 μg/mL) and S. paratyphi-A (MIC < 62.50 μg/mL and MBC = 125 μg/mL), and fungal species Candida albicans (MIC and MBC = 250 μg/mL) as compared to control-positive antibiotics. Therefore, POEO is a valuable natural alternative rich in sesquiterpenes with strong antimicrobial and antifungal activities against some fungal and bacterial strains. It can also be used in the pharmaceutical, food and cosmetic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abyar S, Fakheri BA, Mahdi NN (2019) Ecological factors affecting the South West of the country on the gum and essential oil composition ferula asa foetida. J. Plant Proc Func 8(30):125–135

    Google Scholar 

  • Adams, R.P. Identification of essential oil components by gas chromatography/quadruple mass spectroscopy. Carol Stream IL, 804, (Allured Publishing Cropration, 2007).

  • Amor IL-B, Boubaker J, Sgaier MB, Skandrani I, Bhouri W, Neffati A et al (2009) Phytochemistry and biological activities of Phlomis species. J Ethnopharmacol 125:183–202. https://doi.org/10.1016/j.jep.2009.06.022

    Article  CAS  Google Scholar 

  • Ashrafi Tamai I, Zahraei Salehi T, Khosravi A, Sharifzadeh A, Balal A (2013) Chemical Composition and Anti-candida Activity of Trachyspermum ammi essential oil on azoles resistant candida albicans isolates from oral cavity of HIV+ Patients. J Med Plants 12(46):137–149

    Google Scholar 

  • Aslani MM, Hahsemipour M, Nikbin VS, Shahcheraghi F, Eidi A, Sharafi Z (2009) PCR identification of Pseudomonas aeruginosa based on two outermembrane lipoprotein oprI, oprL, and exotoxin A gene. Yafte 11(2):21–26

    Google Scholar 

  • Azarnivand H, Ghavam Arabani M, Sefidkon F, Tavili A (2010) The effect of ecological characteristics on quality and quantity of the essential oils of Achillea millefolium L. subsp millefolium. Iran J Med Aromat Plants Res 25(4):556–571. https://doi.org/10.22092/ijmapr.2010.7141

    Article  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2007) Biological effect of essential oils-A review. J Food Chem Toxicol 46:446–475

    Article  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils–a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  PubMed  Google Scholar 

  • Baser KHC (1992) Turkish rose oil. Perf Flav 17:45–52

    CAS  Google Scholar 

  • Bauer CA, Jenkins HA (1998) Otologic symptoms & syndromes. In: Cummings CW (ed) Otolaryngology Head & Neck surgery. Mosby, St luis, p 2548

    Google Scholar 

  • Benoit SC, Kemp CJ, Elias CF et al (2009) Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents. J Clin Invest 119(9):2577–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkett MA, Al Abassi S, Krober T, Chamberlain K, Hooper AM, Guerin PM, Pettersson J, Pickett JA, Slade R, Wadhams LJ (2008) Antiectoparasitic activity of the gum resin, gum haggar, from the East Africa plant. Commiphora Holtziana Phytochem 69:1710–1715

    Article  CAS  Google Scholar 

  • Bokaie S, Ansari F, Peighambari S, Mahmoudi M, Fallah M, Tehrani F et al (2016) Investigation of the Prevalence and Risk Factors of Salmonella in Broiler Breeder Farms in Iran During 2013-2014. irje 2016 12(2):32-39

  • Bruce TJA, Birkett MA, Blande J, Hooper AM, Martin JL, Khambay B, Prosser I, Smart LE, Wadhams LJ (2005) Response of economically important aphids to components of Hemizygia petiolata essential oil. Pest Manag Sci 61:1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Bülow N, Konig WA (2000) The role of germacrene D as a precursor in sesquiterpene biosynthesis: investigations of acid catalyzed, photochemically and thermally induced rearrangements. Phytochemistry 55(2):141–168

    Article  PubMed  Google Scholar 

  • Burt S (2004) Essential oils: Their antibacterial properties and potentialapplications in foods – a review. Int J FoodMicrobiol 94:223–253

    Article  CAS  Google Scholar 

  • Canter PH, Thomas H, Ernst E (2005) Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol 23:180–185

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran M, Kannathasan K, Venkatesalu V (2008) Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Z Naturforsch C 63(5–6):331–336

    Article  CAS  PubMed  Google Scholar 

  • CLSI. Clinical and Laboratory Standard Institute. 2012. Performance standards for antimicrobial disk susceptibility testing: Approved standard: National Committee for Clinical Laboratory Standards, 29: 1–76.

  • Couladis M, Tanimanidis A, Tzakou O, Chinou IB, Harvala C (2000) Essential oil of Phlomis lanata growing in Greece: chemical composition and antimicrobial activity. Planta Med 66:670–672

    Article  CAS  PubMed  Google Scholar 

  • da Silva AC, Lopes PM, de Azevedo MM, Costa DC, Alviano CS, Alviano DS (2012) Biological activities of alpha-pinene and beta-pinene enantiomers. Molecules 17:6305–6316

    Article  Google Scholar 

  • Dahham SS, Tabana YM, Iqbal MA, Ahamed MBK, Ezzat MO, Majid ASA, Majid AMSA (2015) The Anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 20:11808–11829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delfan E, Azizi K (2020) Ethnobotany of native medicinal plants in Zagheh and Biranshahr districts, Lorestan Province Iran. Eco-Phytochem J Med Plants 7(4):64–82

    Google Scholar 

  • Delnavazi M, Mohammadifar F, Rustaie A, Aghaahmadi M, Yassa N (2016) Phytochemical constituents, antioxidant activity and toxicity potential of Phlomis olivieri Benth. Res J Pharm 3(2):9–15

    CAS  Google Scholar 

  • Demirci F, Guven K, Demirci B, Dadandi MY, Baser KHC (2008) Antibacterial activity of two Phlomis essential oils against food pathogens. Food Control 19:1159–1164

    Article  CAS  Google Scholar 

  • Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85(6):1629–1642

    Article  CAS  PubMed  Google Scholar 

  • Deylamsalehi M, Mahdavi M, Motavalizadehkakhky A, Akbarzadeh M, Mahmudi J, Mirahmadi SF, Ebrahimi Z, Abedi F (2013) Chemical compositions and antimicrobial activity of essential oil of Phlomis cancellata Bunge from Mazandaran. TEOP J 16(4):555–562

    CAS  Google Scholar 

  • Dufour M, Manson JM, Bremer PJ, Dufour JP, Cook GM, Simmonds RS (2007) Characterization of monolaurin resistance in Enterococcus faecalis. Appl Environ Microbio 51(5507):5515

    Google Scholar 

  • Duke JA (1985) Handbook of medicinal herbs. CTC Press, Boca Raton

    Google Scholar 

  • Fabrizio F, Caruso A, Barbarossa A, Fazio A, Torre L, Chiara C, Jessica M, Rosanna S, Carmela I, Domenico S, Maria S (2019) “β-Caryophyllene: a sesquiterpene with countless biological properties.” Appl Sci 9(24):5420

    Article  Google Scholar 

  • Gavanji S, Larki B (2017) Comparative effect of propolis of honey bee and some herbal extracts on Candida Albicans. Chin J Integr Med 23(3):201–207

    Article  PubMed  Google Scholar 

  • Gertsch J, Leonti M, Raduner S, Racz I, Chen JZ, Xie XQ, Altmann KH, Karsak M, Zimmer A (2008) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci USA 105:9099–9104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghassemi N, Seyed Ebrahim S, Lame MA (2001) Volatile constituents of Phlomis Olivieri Benth. Daru 9:48–50

    CAS  Google Scholar 

  • Ghasemi PA, Momeni M, Bahmani M (2013) Ethnobotanical study of medicinal plants used by Kurd tribe in Dehloran and Abdanan districts, Ilam province. Iran Afr J Tradit Complet Altern Med 10(2):368–385

    Google Scholar 

  • Ghavam M (2021) Relationships of irrigation water and soil physical and chemical characteristics with yield, chemical composition and antimicrobial activity of Damask rose essential oil. PLoS ONE 16(4):e0249363. https://doi.org/10.1371/journal.pone.0249363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghavam M, Azarnivand H, Sefidkon F, Tavili A (2020) Comparison of the quantity and quality of the essential oils of the flowers and leaves of the two subspecies of Achillea millefolium L. with the pharmacy source approach. Aumj 9(4):345–356

    Google Scholar 

  • Ghavam M, Afzali A, Manca ML (2021a) Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci Rep 11:8027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghavam M, Afzali A, Manconi M et al (2021b) Variability in chemical composition and antimicrobial activity of essential oil of Rosa × damascena Herrm from mountainous regions of Iran. Chem Biol Technol Agric. 8:22. https://doi.org/10.1186/s40538-021-00219-6

    Article  CAS  Google Scholar 

  • Gilsic S, Milojeij S, Dimitrjvi J, Orlovij A, Skala D (2007) Antimicrobial activity of the essential oil and different fractions of Juniperus communis L and a comparison with some commercial antibiotics. J Serb Chem Soc 72(4):311–320

    Article  Google Scholar 

  • Gul HI, Ojanen T, Hänninen O (2002) Antifungal evaluation of bis Mannich bases derived from acetophenones and their corresponding piperidinols and stability studies. Bio Pharm Bull 25:1307–1310

    Article  CAS  Google Scholar 

  • Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the components of melaleuca Alternifolia (Tea Tree) Oil. J Appl Microbiol 95:853–860

    Article  CAS  PubMed  Google Scholar 

  • Harvala C, Couladis M, Tanimanidis A (2000) Essential oil of Phlomis lanata growing in Greece: Chemical composition and antimicrobial activity. Planta Med 66(7):670–672

    Article  PubMed  Google Scholar 

  • Heidari Sureshjani M, Tabatabaei Yazdi F, Mortazavi A, Shahidi F (2015) Comparison of the Inhibitory and antibacterial effect of aqueous and Ethanolic Extract of Kelussia odoratissima on Some Pathogenic Bacteria. JRUMS 13(9):775–784

    Google Scholar 

  • Heywood V.H. 2002. Biodiversity: Biomolecular aspects of biodiversity and Innovative Utilization. Şener B. Springer.The Conservation of Genetic and Chemical Diversity in Medicinal and Aromatic Plants, 13–22.

  • Jamzad M, Jamzad Z, Mokhber F, Ziareh S (2013) Essential oil composition of the leaves and flowers of Phlomis persica Bois and Phlomis olivieri Benth. from Iran. J Essen Oil Bear Plants 16(4):451–455

    Article  CAS  Google Scholar 

  • Jamzad, Z. (2012) Flora of Iran, No. 76: Lamiaceae. Tehran: Research Institue of Forests and Rangelands, Tehran.

  • John EM, Gregory KB (1987) Synthesis of macrocyclic terpenoid hydrocarbons by intramolecular carbonyl coupling: bicyclogermacrene, lepidozene, and casbene. J Org Chem 52(22):4885–4893

    Article  Google Scholar 

  • Kabir MA, Hussain MA, Ahmad Z (2012) Candida Albicans: a model organism for studying fungal pathogens. ISRN Microbiol 2012:538694

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungalproperties of essential oils. Curr Med Chem 10:813–829

    Article  CAS  PubMed  Google Scholar 

  • Karadağ AE, Demirci B, Kültür Ş, Fatih Demirci K, Başer HC (2020) Antimicrobial, anticholinesterase evaluation and chemical characterization of essential oil Phlomis kurdica Rech fil Growing in Turkey. J Essen Oil Res 32(3):242–252

    Article  Google Scholar 

  • Khalilzadeh MA, Rustaiyan A, Masoudi S, Tajbakhsh M (2005) Essential oils of Phlomis persica Boiss and Phlomis olivieri Benth from Iran. J Essent Oil Res 17:624–625. https://doi.org/10.1080/10412905.2005.9699014

    Article  CAS  Google Scholar 

  • Khodayari H, Amani Sh, Amiri H (2015) Ethnobotany of medicinal plants in the northeast of Khuzestan province Eco-phytochemical. J Med Plants 2(4):12–26

    Google Scholar 

  • Kiran SR, Devi PS (2007) Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon swietenia DC. Parasitol Res 101:413–418

    Article  PubMed  Google Scholar 

  • Kirmizibekmez H, Montoro P, Piacente S, Pizza C, Donmez A, Calis I (2005) Identification by HPLC-PAD-MS and quantification by HPLC-PAD of phenylethanoid glycosides of five Phlomis species. Phytochem Anal 16:1–6

    Article  CAS  PubMed  Google Scholar 

  • Legault J, Pichette A (2007) Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol 59:1643–1647

    Article  CAS  PubMed  Google Scholar 

  • Leite AM, Lima EO, Souza EL, Diniz MFM, Trajano VN, Medeiros IA (2007) Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Revista Brasileira De Ciências Farmacêuticas 43:121–126

    Article  CAS  Google Scholar 

  • Li MX, Shang XF, Jia ZP, Zhang RX (2010) Phytochemical and biological studies of plants from the genus Phlomis. Chem Biodivers 7:283–301

    Article  CAS  PubMed  Google Scholar 

  • Liolios C, Laouer H, Boulaacheb N, Gortzi O, Chinou I (2007) Chemical composition and antimicrobial activity of the essential oil of Algerian Phlomis bovei De Noé subsp bovei. Molecules 12(4):772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado KDC, Islam MT, Ali ES, Rouf R, Uddin SJ, Dev S, Shilpi JA, Shill MC, Reza HM, Das AK et al (2018) A systematic review on the neuroprotective perspectives of beta-caryophyllene. Phytother Res 32:2376–2388

    Article  CAS  PubMed  Google Scholar 

  • Majdi M, Khazaei Koohpar Z, Nasrollahi OA (2019) Investigation of mutations of ERG11 gene in fluconazole resistant strains of Candida Albicans isolated from patients with Volvovaginitis in West of Mazandaran. Iran J Med Microbiol 13(1):14–21

    Article  Google Scholar 

  • Mamadalieva NZ, Youssef FS, Ashour ML, Akramov DK, Sasmakov SA, Ramazonov NS, Azimova SS (2021) A comparative study on chemical composition and antimicrobial activity of essential oils from three Phlomis species from Uzbekistan. Nat Prod Res 35(4):696–701

    Article  CAS  PubMed  Google Scholar 

  • Marin M, Novakovic M, Vuckovic I, Teševic V, Kolarevic S, Vukovic-Gacic B (2018) Wild Thymus capitatus Hoff Et. link chemical composition, antioxidant and antimicrobial activities of the essential oil. J Essen Oil Bear Plants 21(2):388–399

    Article  CAS  Google Scholar 

  • Mashreghi M, Azizi M, Oroojalian F, Shahyahmasebi N (2015) Study on the chemical constituents and antibacterial activity of Kelussia odoratissima and Teucrium polium Essential oils against some food borne pathogens. J Hortic Sci 28(4):487–495

    Google Scholar 

  • Mattanna P, Da Rosa PD, Poli J, Richards NSPS, Daboit TC, Scroferneker ML, Valente P (2014) Lipid profile and antimicrobial activity of microbial oils from 16 oleaginous yeasts isolated from artisanal cheese. Rev Bras Bioci 12:121–126

    Google Scholar 

  • Mirza M (2001) Survey of the esseential oil of Teucrium polium L. from Iran. Iran J Med Aromat Plants Res 10(1):27–38

    Google Scholar 

  • Mirza M, Baher Nik Z (2007) Volatile constituents of Phlomis olivieri Benth from Iran. Flavour Fragr J 18:131–132

    Article  Google Scholar 

  • Moazeni M, Saharkhiz MJ, Hosseini AA (2012) In vitro lethal effect of ajowan (Trachyspermum ammi L.) essential oil on hydatid cyst protoscolices. Vet Parasitol 187:203–208

    Article  CAS  PubMed  Google Scholar 

  • Moein S, Moein M, Khoshnoud MJ, Kalanteri T (2012) In vitro antioxidant properties evaluation of 10 Iranian medicinal plants by different methods. Iran Red Crescent Med J 14:771. https://doi.org/10.5812/ircmj.1408

    Article  PubMed  PubMed Central  Google Scholar 

  • Moghtader M (2014) Comparative evaluation of the essential oil composition from the leaves and flowers of Hyssopus officinalis L. J Hortic for 6(1):1–5

    Article  Google Scholar 

  • Mohammad A, Abdolhossein K, Shiva R, Mohamoud MT (2005) Essential oils of Phlomis persica Boiss and Phlomis olivieri Benth from Iran. J Essen Oil Res 17:624–625

    Article  Google Scholar 

  • Morales JP, Santos BM (1997) Effects of different ethanol concentration on the initial growth of lettuce (Lactuca sativa). Proceed Caribb Food Crop Soc 33:442–447

    Google Scholar 

  • Morteza-Semnani K, Saeedi M (2005) The essential oil composition of Phlomis bruguieri Desf. From Iran Flavour Fragr J 20:344–346

    Article  CAS  Google Scholar 

  • Morteza-Semnani K, Saeedi M, Mahdavi MR, Rahimi F (2006a) Antimicrobial Studies on Extracts of Three Species of Phlomis.. Pharm Biol 44(6):426–429

    Article  Google Scholar 

  • Morteza-Semnani K, Saeedi M, Shahani S (2006b) Antioxidant activity of the methanolic extracts of some species of Phlomis and Stachys on sunflower oil. Afr J Biotech 5:2428–2432

    CAS  Google Scholar 

  • Mozaffarian V (1996) A Dictionary of plant names. Farhang Moaser Publishers, Tehran

    Google Scholar 

  • Naghibi F, Mosaddegh M, MohammadiMotamed M, Ghorbani A (2005) Labiatae Family in folk Medicine in Iran: from Ethnobotany to Pharmacology. Iran J Pharma Res 2:63–79

    Google Scholar 

  • Napoli E, Di Vito M (2021) Toward a new future for essential oils. Antibiotics 10:207

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazar Alipoor A, Sefidkon F (2003) Quantitative and qualitative study of the essential oil from aromatic and medicinal Tripleurospermum disciforme (C.A.Mey.) Schultz- Bip. J Med Plants 2(6):33–40

    CAS  Google Scholar 

  • Nejadhabibvash F, Medavadi Kia H, Toufigh S, Ali Mohammadyan M, Amirfathi G, Panahi S (2017) Study of the plant growth stages effect on the color, content and composition of essential oil of Achillea wilhelmsii C Koch Case Study Qushchi Ghat in West Azerbaijan province. Eco-Phytochem J Med Plants 5(3):47–64

    Google Scholar 

  • Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A (2003) Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium Lett. Appl MicrobioL 37:448–451

    Article  CAS  Google Scholar 

  • Ozcan M, Boyraz N (2000) Antifungal properties of some herb decoctions. Euro Food Res Tech 212(1):86–88

    Article  CAS  Google Scholar 

  • Parsa A (1960) Medicinal plants and drugs of plant origin in Iran IV. Plant Food Hum Nutr 7(1):65–136

    Article  Google Scholar 

  • Popović-Djordjević J, Cengiz M, Ozer MS, Sarikurkcu C (2019) Calamintha incana: essential oil composition and biological activity. Ind Crop Prod 128:162–166

    Article  Google Scholar 

  • Ramak P, Karimian V, Siahmansour R (2020) Comparison of the nutrients and chemical composition of Allium jesdianum Boiss & Buhse in the habitats and field. Iran J Hortic Sci 51(1):19–31

    Google Scholar 

  • Rechinger KH (1982) Flora Iranica Graz-Austria: Akademic Druck-U. Verlagsanstalt 150:292–313

    Google Scholar 

  • Ristic MD, Duleti-Lauevi S, Kneevi-Vukevi J, Marin PD, Simi D, Vukojevi J, Janakovi P, Vajs V (2000) Antimicrobial activity of essential oils and ethanol extract of Phlomis fruticosa L. (Lamiaceae). Phytother Res 14:267–271

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Yanez CR, Terrazas LI, Jimenez-Estrada M, Campos JE, Flores-Ortiz CM, Hernandez LB, Cruz-Sanchez T, Garrido-Farina GI, Rodriguez-Monroy MA, Canales-Martinez MM (2017) Anti-candida activity of Bursera morelensis ramirez essential oil and two compounds, alpha-Pinene andgamma-Terpinene-an in vitro study. Molecules. https://doi.org/10.3390/molecules22122095

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghi F, Aboli J, Ali Asgari S (2013) Chemical decomposition of essential oils of plant leaves and flowers Phlomis olivieri Benth (Yellow lamb ear) by gas chromatography-mass spectrometry. J Quantum Chemis Spectrosc. 3(8):45–51

    Google Scholar 

  • Salehi, Upadhyay B et al (2019) Therapeutic Potential of α- and β-Pinene A Miracle Gift of Nature". Biomolecules 9(11):738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandasi M, Leonard CM, Viljoen AM (2008) The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control 19:1070–1075

    Article  CAS  Google Scholar 

  • Sandri IG, Zacaria J, Fracaro F, Delamare APL, Echeverrigaray S (2007) Antimicrobial activity of the essential oils of Brazilian species of the genus Culina against foodborne pathogens and spoiling bacteria. Food Chem 103:823–828

    Article  CAS  Google Scholar 

  • Saracoglu I, Kojima K, Harput US, Ogihara Y (1998) A new phenylethanoid glycoside from Phlomis pungens Willd. var. pungens. Chem Pharm Bull 46(4):726–727

    Article  CAS  Google Scholar 

  • Sarkhail P, Abdollahi M, Shafiee A (2003) Antinociceptive effect of Phlomis olivieri Benth., Phlomis anisodonta Boiss. and Phlomis persica Boiss. total extracts. Pharmacol Res 48(3):263–266

    Article  PubMed  Google Scholar 

  • Sarkhail P, Amin G, Shafiee A (2006) Composition of the essential oil of Phlomis olivieri Benth. from North of Iran. Daru 14:71–74

    CAS  Google Scholar 

  • Senser B, Koseoglu D, Ozcelik U, Kocagoz T, Gunalp A (2001) Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. Int J Med Microbiol 291:387–393

    Article  Google Scholar 

  • Shaghuli S, Maryamabadi A, Mohebbi GH, Barmak A, Armin S, Vazirizadeh A et al (2017) Determination of fatty acids profile and physicochemical study of sea lettuce (Ulva lactuca) oil from Bushehr City Coasts. Iran South Med J 20(2):143–162

    Article  Google Scholar 

  • Tabatabaei Yazdi F, Alizadeh Behbahani B, Heidari Sureshjani M, Mortazavi SA (2014) The in vitro study of antimicrobial effect of Teucrium polium extract on infectious microorganisms. Avicenna J Clin Med 21(1):16–24

    Google Scholar 

  • Tajbakhsh M, Rineh A, Khalilzadeh MA (2007) Chemical composition of the essential oils from leaves, flowers, stem and root of Phlomis olivieri Benth. J Essent Oil Res 19:501–503. https://doi.org/10.1080/10412905.2007.9699315

    Article  CAS  Google Scholar 

  • Tajik H, Djalali SSF (2011) In vitro assessment of antibacterial properties of fatty acids and their monoglycerids derivatives against Escherichia coli O157:H7. Iran J Med Microbiol 4(4):51–58

    Google Scholar 

  • Tajik-Ijdan F, Kazemi A, Nowrozi H (2017) Comparing the effects of alcoholic extract of ginseng with itraconazole against Candida albicans and Candida krusei. Feyz 21(3):211–217

    Google Scholar 

  • Tavassoli S, Mousavi SM, Emam-Djomeh Z et al (2011) Comparative study of the antimicrobial activity of Rosmarinus officinalis L. essential oil and methanolic extract. Middle-East J Sci Res 9(4):467–471

    CAS  Google Scholar 

  • Toroǧlu S, Çenet M (2013) Comparison of antimicrobial activities of essential oil and solvent extracts of endemic Phlomis oppositiflora Boiss & Hausskn from Turkey. Pak J Zool 45(2):475–482

    Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–500

    PubMed  PubMed Central  Google Scholar 

  • Van Zyl RL, Seatlholo ST, van Vuuren SF (2006) The biological activities of 20 nature identical essential oil constituents. J Essent Oil Res 18:129–133

    Article  Google Scholar 

  • Yoo HJ, Jwa SK (2018) Inhibitory e_ects of beta-caryophyllene on Streptococcus mutans biofilm. Arch Oral Biol 88:42–46

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li C, Feng SI, Shi JG (1991) Iridoid glucosides from Phlomis rotata. Phytochemistry 30(12):4156–4158

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MG was the supervisor, designer of the hypotheses, and responsible for all the steps (plant collection, plant identification, laboratory, statistical analysis, data analysis, etc.) and wrote the text of the article.

Corresponding author

Correspondence to Mansureh Ghavam.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghavam, M. Phytochemical analysis and antibacterial/antifungal activity of the essential oil of Phlomis olivieri Benth in Iran. Inflammopharmacol 31, 2493–2504 (2023). https://doi.org/10.1007/s10787-023-01170-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01170-8

Keywords

Navigation