Skip to main content

Advertisement

Log in

The anti-angiogenesis mechanism of Geniposide on rheumatoid arthritis is related to the regulation of PTEN

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is a systemic immune disease characterized by joint inflammation and pannus. The nascent pannus contributes to synovial hyperplasia, cartilage, and tissue damage in RA. This study aims to explore the therapeutic effect and potential mechanism of Geniposide (GE) on RA angiogenesis, involving the participation of phosphate and tension homology deleted on chromosome ten (PTEN) and downstream pathways. Clinical manifestations, synovial pathomorphology, microvessel density, and the level of angiogenesis-related factors were used to evaluate the therapeutic effect of GE on adjuvant-induced arthritis (AA) rats. The proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) indicate the degree of angiogenesis in vitro. Lentivirus over-expression of PTEN was employed to elucidate the potential mechanism. The results showed that GE improved the degree of arthritis and angiogenesis in AA rats. The expression of PTEN was decreased significantly in vivo and in vitro, and over-expression of PTEN improved the biological function of HUVECs to inhibit angiogenesis. GE inhibited the proliferation, migration, and tubule formation of HUVECs and plays an anti-angiogenesis role in vitro. Mechanism study showed that PTEN expression was increased and p-PI3K and p-Akt expression was decreased with GE treatment. It suggests that GE up-regulated the expression of PTEN and inhibited the activation of PI3K-Akt signal, which plays a role in inhibiting angiogenesis in RA in vivo and in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data generated in this study have been analyzed and included in this article, and unprocessed data will be available on request.

References

  • Alam J, Jantan I, Bukhari SNA (2017) Rheumatoid arthritis: recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed Pharmacother 92:615–633

    Article  CAS  PubMed  Google Scholar 

  • Balogh E, Biniecka M, Fearon U, Veale DJ, Szekanecz Z (2019) Angiogenesis in inflammatory arthritis. Isr Med Assoc J 21(5):345–352

    PubMed  Google Scholar 

  • Bevaart L, Vervoordeldonk MJ, Tak PP (2010) Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum 62(8):2192–2205

    Article  CAS  PubMed  Google Scholar 

  • Bosisio D, Salvi V, Gagliostro V, Sozzani S (2014) Angiogenic and anti-angiogenic chemokines. Chem Immunol Allergy 99:89–104

    Article  CAS  PubMed  Google Scholar 

  • Bouck N (1996) P53 and angiogenesis. Biochim Biophys Acta 1287(1):63–66

    PubMed  Google Scholar 

  • Chen CY, Chen J, He L, Stiles BL (2018) PTEN: tumor suppressor and metabolic regulator. Front Endocrinol (lausanne) 9:338

    Article  Google Scholar 

  • Cheung TT, McInnes IB (2017) Future therapeutic targets in rheumatoid arthritis? Semin Immunopathol 39(4):487–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary N, Bhatt LK, Prabhavalkar KS (2018) Experimental animal models for rheumatoid arthritis. Immunopharmacol Immunotoxicol 40(3):193–200

    Article  CAS  PubMed  Google Scholar 

  • Deng R, Bu Y, Li F, Wu H, Wang Y, Wei W (2021) The interplay between fibroblast-like synovial and vascular endothelial cells leads to angiogenesis via the sphingosine-1-phosphate-induced RhoA-F-Actin and Ras-Erk1/2 pathways and the intervention of geniposide. Phytother Res 35(9):5305–5317

    Article  CAS  PubMed  Google Scholar 

  • Duan MX, Zhou H, Wu QQ et al (2019) Andrographolide protects against HG-induced inflammation, apoptosis, migration, and impairment of angiogenesis via PI3K/AKT-eNOS signalling in HUVECs. Mediators Inflamm 2019:6168340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Hafny-Rahbi B, Brodaczewska K, Collet G et al (2021) Tumour angiogenesis normalized by myo-inositol trispyrophosphate alleviates hypoxia in the microenvironment and promotes antitumor immune response. J Cell Mol Med 25(7):3284–3299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elshabrawy HA, Chen Z, Volin MV, Ravella S, Virupannavar S, Shahrara S (2015) The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 18(4):433–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshabrawy HA, Volin MV, Essani AB et al (2018) IL-11 facilitates a novel connection between RA joint fibroblasts and endothelial cells. Angiogenesis 21(2):215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity 46(2):183–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000) Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci USA 97(4):1749–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuczynski EA, Reynolds AR (2020) Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis 23(1):55–74

    Article  CAS  PubMed  Google Scholar 

  • Lee AS, Kim JS, Lee YJ, Kang DG, Lee HS (2012) Anti-TNF-α activity of Portulaca oleracea in vascular endothelial cells. Int J Mol Sci 13(5):5628–5644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhao H, Chen W, Huang P, Bi J (2019) Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis. Int J Biochem Cell Biol 114:105570

    Article  CAS  PubMed  Google Scholar 

  • Littlejohn EA, Monrad SU (2018) Early diagnosis and treatment of rheumatoid arthritis. Prim Care 45(2):237–255

    Article  PubMed  Google Scholar 

  • Liu C, He L, Wang J et al (2020) Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways. J Ethnopharmacol 260:113039

    Article  CAS  PubMed  Google Scholar 

  • Lu JM, Zhang ZZ, Ma X, Fang SF, Qin XH (2020) Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 190:107886

    Article  CAS  PubMed  Google Scholar 

  • MacDonald IJ, Liu SC, Su CM, Wang YH, Tsai CH, Tang CH (2018) Implications of angiogenesis involvement in arthritis. Int J Mol Sci 19(7):2012

    Article  PubMed Central  Google Scholar 

  • Mahdavi Sharif P, Jabbari P, Razi S, Keshavarz-Fathi M, Rezaei N (2020) Importance of TNF-alpha and its alterations in the development of cancers. Cytokine 130:155066 (published online ahead of print, 2020 Mar 21)

    Article  CAS  PubMed  Google Scholar 

  • Marrelli A, Cipriani P, Liakouli V et al (2011) Angiogenesis in rheumatoid arthritis: a disease specific process or a common response to chronic inflammation? Autoimmun Rev 10(10):595–598

    Article  CAS  PubMed  Google Scholar 

  • Naito H, Iba T, Takakura N (2020) Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol 32(5):295–305

    Article  CAS  PubMed  Google Scholar 

  • Ogami K, Yamaguchi R, Imoto S et al (2012) Computational gene network analysis reveals TNF-induced angiogenesis. BMC Syst Biol 6(Suppl 2):S12

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang W, Li J, Shi X, Costa M, Huang C (2005) Essential role of PI-3K, ERKs and calcium signal pathways in nickel-induced VEGF expression. Mol Cell Biochem 279(1–2):35–43

    Article  CAS  PubMed  Google Scholar 

  • Papa A, Pandolfi PP (2019) The PTEN-PI3K axis in cancer. Biomolecules 9(4):153

    Article  CAS  PubMed Central  Google Scholar 

  • Quiñonez-Flores CM, González-Chávez SA, Pacheco-Tena C (2016) Hypoxia and its implications in rheumatoid arthritis. J Biomed Sci 23(1):62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ran D, Hong W, Yan W, Mengdie W (2021) Properties and molecular mechanisms underlying geniposide-mediated therapeutic effects in chronic inflammatory diseases. J Ethnopharmacol 273:113958

    Article  CAS  PubMed  Google Scholar 

  • Ren B, Yee KO, Lawler J, Khosravi-Far R (2006) Regulation of tumor angiogenesis by thrombospondin-1. Biochim Biophys Acta 1765(2):178–188

    CAS  PubMed  Google Scholar 

  • Serra H, Chivite I, Angulo-Urarte A et al (2015) PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat Commun 6:7935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spinelli FR, Metere A, Barbati C et al (2013) Effect of therapeutic inhibition of TNF on circulating endothelial progenitor cells in patients with rheumatoid arthritis. Mediators Inflamm 2013:537539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun M, Deng R, Wang Y et al (2020) Sphingosine kinase 1/sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 pathway: a novel target of geniposide to inhibit angiogenesis. Life Sci 256:117988

    Article  CAS  PubMed  Google Scholar 

  • Sundaram P, Hultine S, Smith LM et al (2011) p53-responsive miR-194 inhibits thrombospondin-1 and promotes angiogenesis in colon cancers. Cancer Res 71(24):7490–7501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor PC, Sivakumar B (2005) Hypoxia and angiogenesis in rheumatoid arthritis. Curr Opin Rheumatol 17(3):293–298

    Article  PubMed  Google Scholar 

  • Volin MV, Koch AE (2011) Interleukin-18: a mediator of inflammation and angiogenesis in rheumatoid arthritis. J Interferon Cytokine Res 31(10):745–751

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu H, Deng R (2021a) Angiogenesis as a potential treatment strategy for rheumatoid arthritis. Eur J Pharmacol 910:174500

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wu H, Deng R et al (2021b) Geniposide downregulates the VEGF/SphK1/S1P pathway and alleviates angiogenesis in rheumatoid arthritis in vivo and in vitro. Phytother Res 35(8):4347–4362

    Article  CAS  PubMed  Google Scholar 

  • Xue L, Huang J, Zhang T et al (2018) PTEN inhibition enhances angiogenesis in an in vitro model of ischemic injury by promoting Akt phosphorylation and subsequent hypoxia inducible factor-1α up-regulation. Metab Brain Dis 33(5):1679–1688

    Article  CAS  PubMed  Google Scholar 

  • Yi J, Zhu J, Wu J, Thompson CB, Jiang X (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA 117(49):31189–31197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang P, Zhang X, Zhao W, Ren H, Hu Z (2020) SDF1/CXCR4 axis facilitates the angiogenesis via activating the PI3K/AKT pathway in degenerated discs. Mol Med Rep 22(5):4163–4172

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No 81874360 and No 81073122) and the major projects of Natural Science Research in Anhui Universities (KJ2021ZD0060).

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: YB and HW. Conducted experiments: YB, RD, and YW. Performed data analysis: YB, RD, and YW. Wrote or contributed to the writing of the manuscript: YB.

Corresponding author

Correspondence to Hong Wu.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethics approval

All animal studies designed in this article have been approved by the experimental animal ethics committee of Anhui University of Traditional Chinese Medicine (No. ahucm-rates-2021049). It is considered that this study meets the requirements of animal ethics in animal species selection, quantity, feeding, and modeling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, Y., Wu, H., Deng, R. et al. The anti-angiogenesis mechanism of Geniposide on rheumatoid arthritis is related to the regulation of PTEN. Inflammopharmacol 30, 1047–1062 (2022). https://doi.org/10.1007/s10787-022-00975-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-022-00975-3

Keywords

Navigation