Skip to main content

Advertisement

Log in

Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Our aim was to investigate whether tangeretin, a citrus flavonoid, was able to prevent neuroinflammation and improve dementia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced rodent model of Parkinson’s disease (PD). MPTP-HCl was infused into the substantia nigra pars compacta of male Sprague–Dawley rats. Tangeretin (50, 100 or 200 mg/kg body weight) was administered orally starting 3 days prior to MPTP injection and was continued for 20 days following injection. MPTP-lesioned rats revealed motor dysfunction in bar test and rota rod tests. Deficits in working memory and object recognition function were also observed following MPTP induction. Tangeretin treatment significantly attenuated the memory deficits and improved motor functions and cognition. Immunohistochemical analysis reveals the protective effects of tangeretin against MPTP lesion-induced dopaminergic degeneration and hippocampal neuronal loss. Tangeretin reduced expression of inflammatory mediators—COX-2, iNOS—as well reduced the levels of cytokines—interleukins (IL)—IL-1β, IL-6 and IL-2. The experimental data suggest tangeretin as an effective candidate drug with potential for prevention and treatment of neuroinflammation and dementia associated with PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barcia C, Sanchez Bahillo A, Fernandez-Villalba E, Bautista V, Poza YPM, Fernandez-Barreiro A, Hirsch EC, Herrero MT (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–409

    Article  PubMed  Google Scholar 

  • Barnes J, Boubert L, Harris J, Lee A, David AS (2003) Reality monitoring and visual hallucinations in Parkinson’s disease. Neuropsychologia 41:e565–e574

    Article  Google Scholar 

  • Benavente-García O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205

    Article  PubMed  Google Scholar 

  • Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, Vescovi A, Bagetta G, Kollias G, Meldolesi J, Volterra A (2001) CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci 4:702–710

    Article  CAS  PubMed  Google Scholar 

  • Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62:63–88

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Rub U, Jansen Steur EN, Del Tredici K, de Vos RA (2005) Cognitive status correlates with neuropathologic stage in Parkinson disease. Neurology 64:e1404–e1410

    Article  Google Scholar 

  • Braga R, Kouzmine I, Canteras NS, Da Cunha C (2005) Lesion of the substantia nigra, pars compacta impairs delayed alternation in a Y-maze in rats. Exp Neurol 192:134–141

    Article  CAS  PubMed  Google Scholar 

  • Capitelli C, Sereniki A, Lima MM, Reksidler AB, Tufik S, Vital MA (2008) Melatonin attenuates tyrosine hydroxylase loss and hypolocomotion in MPTP-lesioned rats. Eur J Pharmacol 594:101–108

    Article  CAS  PubMed  Google Scholar 

  • Centonze D, Gubellini P, Rossi S, Picconi B, Pisani A, Bernardi G, Calabresi P, Baunez C (2005) Subthalamic nucleus lesion reverses motor abnormalities and striatal glutamatergic over activity in experimental parkinsonism. Neuroscience 133:831–840

    Article  CAS  PubMed  Google Scholar 

  • Cepeda C, Levine MS (1998) Dopamine and N-methyl-d-aspartate receptor interactions in the neostriatum. Dev Neurosci 20:1–18

    Article  CAS  PubMed  Google Scholar 

  • Chihab R, Oillet J, Bossenmeyer C, Daval JL (1998) Glutamate triggers cell death specifically in mature central neurons through a necrotic process. Mol Genet Metab 63:142–147

    Article  CAS  PubMed  Google Scholar 

  • Crucian GP, Okun MS (2003) Visual-spatial ability in Parkinson’s disease. Front Biosci 8:s992–s997

    Article  PubMed  Google Scholar 

  • Da Cunha C, Gevaerd MS, Vital MA, Miyoshi E, Andreatini R, Silveira R, Takahashi RN, Canteras NS (2001) Memory disruption in rats with nigral lesions induced by MPTP: a model for early Parkinson’s disease amnesia. Behav Brain Res 124:9–18

    Article  PubMed  Google Scholar 

  • Datla KP, Christidou M, Widmer WW, Rooprai HK, Dexter DT (2001) Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. NeuroReport 12:3871–3875

    Article  CAS  PubMed  Google Scholar 

  • Emre M (2003) Dementia associated with Parkinson’s disease. Lancet Neurol 2:229–237

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. I. Behavioral data. Behav Brain Res 31:47–59

    Article  CAS  PubMed  Google Scholar 

  • Ferro MM, Bellissimo MI, Anselmo-Franci JA, Angellucci ME, Canteras NS, Da Cunha C (2005) Comparison of bilaterally 6-OHDA- and MPTP-lesioned rats as models of the early phase of Parkinson’s disease: histological, neurochemical, motor and memory alterations. J Neurosci Meth 148:78–87

    Article  CAS  Google Scholar 

  • Funaro A, Wu X, Song M, Zheng J, Guo S, Rakariyatham K, Rodriguez-Estrada MT, Xiao H (2016) Enhanced anti-inflammatory activities by the combination of luteolin and tangeretin. J Food Sci 81:H1320–H1327

    Article  CAS  PubMed  Google Scholar 

  • Gevaerd MS, Takahashi RN, Silveira R, Da Cunha C (2001) Caffeine reverses the memory disruption induced by intra-nigral MPTP-injection in rats. Brain Res Bull 55:101–106

    Article  CAS  PubMed  Google Scholar 

  • Gilbert PE, Kesner RP (2006) The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behav Brain Res 169:142–149

    Article  PubMed  Google Scholar 

  • Girotti F, Soliveri P, Carella F, Piccolo I, Caffarra P, Musicco M, Caraceni T (1988) Dementia and cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:1498–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannesson DK, Howland JG, Phillips AG (2004) Interaction between perirhinal and medial prefrontal cortex is required for temporal order but not recognition memory for objects in rats. J Neurosci 24:4596–4604

    Article  CAS  PubMed  Google Scholar 

  • Hirohata M, Ono K, Morinaga A, Yamada M (2008) Non-steroidal anti-inflammatory drugs have potent anti-fibrillogenic and fibril-destabilizing effects for alpha-synuclein fibrils in vitro. Neuropharmacology 54:620–627

    Article  CAS  PubMed  Google Scholar 

  • Hirsch EC, Hunot S, Hartmann A (2005) Neuroinflammatory processes in Parkinson’s disease. Parkinsonism Relat Disord 11:S9–S15

    Article  PubMed  Google Scholar 

  • Hirsch EC, Vyas S, Hunot S (2012) Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord 18:S210–S212

    Article  PubMed  Google Scholar 

  • Ho SC, Kuo CT (2014) Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem Toxicol 71:176–182

    Article  CAS  PubMed  Google Scholar 

  • Ho YJ, Chang YC, Liu TM, Tai MY, Wong CS, Tsai YF (2000) Striatal glutamate release during novelty exposure-induced hyperactivity in olfactory bulbectomized rats. Neurosci Lett 287:117–120

    Article  CAS  PubMed  Google Scholar 

  • Ho YJ, Ho SC, Pawlak CR, Yeh KY (2011) Effects of d-cycloserine on MPTP-induced behavioral and neurological changes: potential for treatment of Parkinson’s disease dementia. Behav Brain Res 219:280–290

    Article  CAS  PubMed  Google Scholar 

  • Ho SC, Hsu CC, Pawlak CR, Tikhonova MA, Lai TJ, Amstislavskaya TG, Ho YJ (2014) Effects of ceftriaxone on the behavioral and neuronal changes in an MPTP-induced Parkinson’s disease rat model. Behav Brain Res 268:177–184

    Article  CAS  PubMed  Google Scholar 

  • Hota SK, Barhwal K, Ray K, Singh SB, Ilavazhagan G (2008) Ceftriaxone rescues hippocampal neurons from excitotoxicity and enhances memory retrieval in chronic hypobaric hypoxia. Neurobiol Learn Mem 89:522–532

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MH, Gu SL, Ho SC, Pawlak CR, Lin CL, Ho YJ, Lai TJ, Wu FY (2012a) Effects of MK-801 on recognition and neurodegeneration in an MPTP-induced Parkinson’s rat model. Behav Brain Res 229:41–47

    Article  CAS  PubMed  Google Scholar 

  • Hsieh MH, Ho SC, Yeh KY, Pawlak CR, Chang HM, Ho YJ, Lai TJ, Wu FY (2012b) Blockade of metabotropic glutamate receptors inhibits cognition and neurodegenerationin an MPTP-induced Parkinson’s disease rat model. Pharmacol Biochem Behav 102:64–71

    Article  CAS  PubMed  Google Scholar 

  • Hsu CY, Hung CS, Chang HM, Liao WC, Ho SC, Ho YJ (2015) Ceftriaxone prevents and reverses behavioral and neuronal deficits in an MPTP-induced animal model of Parkinson’s disease dementia. Neuropharmacology 91:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hunsaker MR, Lee B, Kesner RP (2008) Evaluating the temporal context of episodic memory: the role of CA3 and CA1. Behav Brain Res 188:310–315

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2005) Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol 109:141–150

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Kim BW, Koppula S, Kim IS, Park JH, Kumar H, Choi DK (2012) Molecular effects of activated BV-2 microglia by mitochondrial toxin 1-methyl- 4-phenylpyridinium. Neurotoxicology 33:147–155

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Jones TA (2013) The effects of ceftriaxone on skill learning and motor functional outcome after ischemic cortical damage in rats. Restor Neurol Neurosci 31:87–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klegeris A, McGeer PL (2005) Non-steroidal anti-inflammatory drugs (NSAIDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease. Curr Alzheimer Res 2:355–365

    Article  CAS  PubMed  Google Scholar 

  • Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A (1998) Microglial and astrocytic involvement in a murine model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Immunopharmacology 39:167–180

    Article  CAS  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  CAS  PubMed  Google Scholar 

  • Lee YY, Lee EJ, Park JS, Jang SE, Kim DH, Kim HS (2016) Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia. J Neuroimmune Pharmacol 11:294–305

    Article  PubMed  Google Scholar 

  • Li JS, Chao YS (2008) Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats. Neurobiol Learn Mem 89:192–198

    Article  PubMed  Google Scholar 

  • Li Y, Liu C, Zhao Y, Hu K, Zhang J, Zeng M, Luo T, Jiang W, Wang H (2013) Sevoflurane induces short term changes in proteins in the cerebral cortices of developing rats. Acta Anaesthesiol Scand 57:380–390

    Article  CAS  PubMed  Google Scholar 

  • Luetjens CM, Bui NT, Sengpiel B, Munstermann G, Poppe M, Krohn AJ, Bauerbach E, Krieglstein J, Prehn JH (2000) Delayed mitochondrial dysfunction in excitotoxic neuron death: cytochrome c release and a secondary increase in superoxide production. J Neurosci 20:5715–5723

    CAS  PubMed  Google Scholar 

  • Ma LL, Wang DW, Yu XD, Zhou YL (2016) Tangeretin induces cell cycle arrest and apoptosis through upregulation of PTEN expression in glioma cells. Biomed Pharmacother 81:491–496

    Article  CAS  PubMed  Google Scholar 

  • McAllister CG, van Kammen DP, Rehn TJ, Miller AL, Gurklis J, Kelley ME, Yao J, Peyers JL (1995) Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status. Am J Psychiatry 152:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2004) Inflammation and neurodegeneration in Parkinson’s disease. Parkinsonism Relat Disord 10:S3–S7

    Article  PubMed  Google Scholar 

  • Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 88:1–16

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Togari A, Ogawa M, Ikeguchi K, Shizuma N, Fan D, Nakano I, Nagatsu T (1998) Effects of repeated systemic administration of 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) to mice on interleukin-1beta and nerve growth factor in the striatum. Neurosci Lett 250:25–28

    Article  CAS  PubMed  Google Scholar 

  • More SV, Kumar H, Kim IS, Song SY, Choi DK (2013) Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators Inflamm 2013:952375

  • Mosley RL, Benner EJ, Kadiu I, Thomas M, Boska MD, Hasan K, Laurie C, Gendelman HE (2006) Neuroinflammation, oxidative stress and the pathogenesis of Parkinson’s disease. Clin Neurosci Res 6:261–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss DW, Bates TE (2001) Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci 13:529–538

    Article  CAS  PubMed  Google Scholar 

  • Mumby DG, Tremblay A, Lecluse V, Lehmann H (2005) Hippocampal damage and anterograde object-recognition in rats after long retention intervals. Hippocampus 15:1050–1056

    Article  PubMed  Google Scholar 

  • Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Cytokines in Parkinson’s disease. J Neural Transm Suppl 58:143-151

  • Nolan YM, Sullivan AM, Toulouse A (2013) Parkinson’s disease in the nuclear age of neuroinflammation. Trends Mol Med 19:187–196

    Article  CAS  PubMed  Google Scholar 

  • Ojha S, Javed H, Azimullah S, Abul Khair SB, Haque ME (2016) Glycyrrhizic acid attenuates neuroinflammation and oxidative stress in rotenone model of Parkinson’s disease. Neurotox Res 29:275–287

    Article  CAS  PubMed  Google Scholar 

  • Owen AM, Sahakian BJ, Hodges JR, Summers BA, Polkey CE, Robbins TW (1995) Dopamine dependent frontostriatal planning deficits in early Parkinson’s disease. Neuropsychology 9:126–140

    Article  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, London

    Google Scholar 

  • Periyasamy K, Baskaran K, Ilakkia A, Vanitha K, Selvaraj S, Sakthisekaran D (2015) Antitumor efficacy of tangeretin by targeting the oxidative stress mediated on 7,12-dimethylbenz(a) anthracene-induced proliferative breast cancer in Sprague-Dawley rats. Cancer Chemother Pharmacol 75:263–272

    Article  CAS  PubMed  Google Scholar 

  • Perry JC, Hipolide DC, Tufik S, Martins RD, Da Cunha C, Andreatini R, Vital MA (2005) Intra-nigral MPTP lesion in rats: behavioral and autoradiography studies. Exp Neurol 195:322–329

    Article  PubMed  Google Scholar 

  • Perry VH, Nicoll JA, Holmes C (2010) Microgliain neurodegenerative disease. Nat Rev Neurol 6:193–201

    Article  PubMed  Google Scholar 

  • Petitto JM, McNamara RK, Gendreau PL, Huang Z, Jackson AJ (1999) Impaired learning and memory and altered hippocampal neurodevelopment resulting from interleukin-2 gene deletion. J Neurosci Res 56:441–446

    Article  CAS  PubMed  Google Scholar 

  • Piekema C, Kessels RP, Mars RB, Petersson KM, Fernandez G (2006) The right hippocampus participates in short-term memory maintenance of object-location associations. Neuroimage 33:374–382

    Article  PubMed  Google Scholar 

  • Plaitakis A, Shashidharan P (2000) Glutamate transport and metabolism in dopaminergic neurons of substantia nigra: implications for the pathogenesis of Parkinson’s disease. J Neurol 247:II25–II35

    Article  PubMed  Google Scholar 

  • Ramirez-Ruiz B, Junque C, Marti MJ, Valldeoriola F, Tolosa E (2006) Neuropsychological deficits in Parkinson’s disease patients with visual hallucinations. Mov Disord 21:e1483–e1487

    Article  Google Scholar 

  • Rossetti ZL, Carboni S (2005) Noradrenaline and dopamine elevations in the rat prefrontal cortex in spatial working memory. J Neurosci 25:2322–2329

    Article  CAS  PubMed  Google Scholar 

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102:748–759

    Article  CAS  PubMed  Google Scholar 

  • Schneider JS, Tinker JP, VanVelson M, Giardiniere M (2000) Effects of the partial glycine agonist d-cycloserine on cognitive functioning in chronic low dose MPTP-treated monkeys. Brain Res 860:190–194

    Article  CAS  PubMed  Google Scholar 

  • Sherer TB, Betarbet R, Kim JH, Greenamyre JT (2003) Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett 341:87–90

    Article  CAS  PubMed  Google Scholar 

  • Smeyne M, Jiao Y, Shepherd KR, Smeyne RJ (2005) Glia cell number modulates sensitivity to MPTP in mice. Glia 52:144–152

    Article  PubMed  Google Scholar 

  • Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP (2006) Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. FASEB J 20:670–682

    Article  CAS  PubMed  Google Scholar 

  • Stanic D, Finkelstein DI, Bourke DW, Drago J, Horne MK (2003) Time course of striatal reinnervation following lesions of dopaminergic SNpc neurons of the rat. Eur J Neurosci 18:1175–1188

    Article  CAS  PubMed  Google Scholar 

  • Swennes AG, Alworth LC, Harvey SB, Jones CA, King CS, Crowell-Davis SL (2011) Human handling promotes compliant behavior in adult laboratory rabbits. J Am Assoc Lab Anim Sci 50:41–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sy HN, Wu SL, Wang WF, Chen CH, Huang YT, Liou YM, Chiou CS, Pawlak CR, Ho YJ (2010) MPTP-induced dopaminergic degeneration and deficits in object recognition in rats are accompanied by neuroinflammation in the hippocampus. Pharmacol Biochem Behav 95:158–165

    Article  CAS  PubMed  Google Scholar 

  • Voss J, Sanchez C, Michelsen S, Ebert B (2003) Rotarod studies in the rat of the GABAA receptor agonist gaboxadol: lack of ethanol potentiation and benzodiazepine cross-tolerance. Eur J Pharmacol 482:215–222

    Article  CAS  PubMed  Google Scholar 

  • Vuckovic MG, Wood RI, Holschneider DP, Abernathy A, Togasaki DM, Smith A, Petzinger GM, Jakowec MW (2008) Memory, mood, dopamine, and serotonin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Neurobiol Dis 32:e319–e327

    Article  Google Scholar 

  • Wada M, Yoshimi K, Higo N, Ren YR, Mochizuki H, Mizuno Y, Kitazawa S (2006) Statistical parametric mapping of immunopositive cell density. Neurosci Res 56:96–102

    Article  PubMed  Google Scholar 

  • Wang WF, Wu SL, Liou YM, Wang AL, Pawlak CR, Ho YJ (2009) MPTP lesion causes neuroinflammation and deficits in object recognition in Wistar rats. Behav Neurosci 123:1261–1270

    Article  PubMed  Google Scholar 

  • Wang AL, Liou YM, Pawlak CR, Ho YJ (2010) Involvement of NMDA receptors in both MPTP-induced neuroinflammation and deficits in episodic-like memory in Wistar rats. Behav Brain Res 208:38–46

    Article  PubMed  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, Lucius R (2003) Activation of microglia by human neuromelanin is NF-kappa B dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease. FASEB J 17:500–502

    CAS  PubMed  Google Scholar 

  • Wu JJ, Cui Y, Yang YS, Jung SC, Hyun JW, Maeng YH, Park DB, Lee SR, Kim SJ, Eun SY (2013) Mild mitochondrial depolarization is involved in a neuroprotective mechanism of Citrus sunki peel extract. Phytother Res 27:564–571

    Article  PubMed  Google Scholar 

  • Xiong N, Huang J, Chen C, Zhao Y, Zhang Z, Jia M, Zhang Z, Hou L, Yang H, Cao X, Liang Z, Zhang Y, Sun S, Lin Z, Wang T (2012) Dl-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson’s disease. Neurobiol Aging 33:1777–1791

    Article  CAS  PubMed  Google Scholar 

  • Yasuda Y, Shimoda T, Uno K, Tateishi N, Furuya S, Yagi K, Suzuki K, Fujita S (2008) The effects of MPTP on the activation of microglia/astrocytes and cytokine/chemokine levels in different mice strains. J Neuroimmunol 204:43–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang WN, Pothuizen HH, Feldon J, Rawlins JN (2004) Dissociation of function within the hippocampus: effects of dorsal, ventral and complete excitotoxic hippocampal lesions on spatial navigation. Neuroscience 127:289–300

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-song Teng.

Ethics declarations

Conflict of interest

We authors declare that we do not have any conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Js., Wu, Xh., Yu, Hg. et al. Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease dementia in rats. Inflammopharmacol 25, 471–484 (2017). https://doi.org/10.1007/s10787-017-0348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-017-0348-x

Keywords

Navigation