Skip to main content
Log in

Loss of Stability in a Composite Laminate Compressed by a Surface Load

  • Published:
International Applied Mechanics Aims and scope

The critical loads for a layered material compressed by a surface load are determined numerically using the three-dimensional linearized theory of stability and the piecewise-homogeneous material model. Symmetry conditions on the lateral sides of a layered composite sample are assumed. It is shown that internal loss of stability in the layered composite is microbuckling near the loaded surface manifested as end crushing. The buckling modes decay with distance from the end. The effect of the inhomogeneity of the initial state induced by the load on the buckling modes is studied. The inhomogeneity of the initial state has a strong effect on the amplitudes of the buckling modes and the area of their localization

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kyiv (1986).

    MATH  Google Scholar 

  2. À. N. Guz, Fracture Mechanics of Compressed Composite Materials [in Russian], Naukova Dumka, Kyiv (1990).

    Google Scholar 

  3. A. N. Guz, Fundamentals of the Fracture Mechanics of Compressed Composites [in Russian], in two vols., Litera, Kyiv (2008).

  4. A. N. Guz and V. A. Dekret, Short-Fiber Model in the Theory of the Stability of Composites [in Russian], LAP Lambert Acad. Publ., SaarbrTimes New Roman CE”ьcken (2015).

  5. Ya. M. Grigorenko, Yu. N. Shevchenko, A. T. Vasilenko, et al., Numerical Methods, Vol. 11 of the 12-volume series Mechanics of Composite Materials [in Russian], A.S.K., Kyiv (2002).

  6. V. S. Zelenskii, V. A. Dekret, and V. M. Bystrov, “Stability of a composite laminate at uniaxial loading,” in: Trans. Dniprodzerzhinsk State Technical University [in Russian], Issue 2(19) (Mathematical Problems of Engineering Mechanics), DDTU, Dniprodzerzhinsk (2012), pp. 49–53.

  7. Yu. V. Kokhanenko, “Brittle end-crushing failure of composites,” Dokl. AN SSSR, 296, No. 4, 805–808 (1987).

    Google Scholar 

  8. J. E. Akin, Finite Element Analysis Concepts: via SolidWorks, World Scientific, Hackensack, NJ (2010).

    Book  Google Scholar 

  9. E. J. Barbero, Finite Element Analysis of Composite Materials Using ANSYS, CRC Press (2013).

  10. E. Yu. Bashchuk and V. Yu. Baichuk, “Influence of the principal stress state on the critical loads of a plate with a crack,” Int. Appl. Mech., 49, No. 3, 328–336 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  11. V. M. Bystrov, V. A. Dekret, and V. S. Zelenskii, “Numerical analysis of the edge effect in a composite laminate with compressed reinforcement plies,” Int. Appl. Mech., 51, No. 5, 561–566 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  12. V. A. Dekret, V. S. Zelenskii, and V. M. Bystrov, “Numerical analysis of stability of a laminated composite with uniaxially compressed reinforcement plies,” Int. Appl. Mech., 50, No. 5, 549–557 (2014).

    Article  MathSciNet  Google Scholar 

  13. N. A. Fleck, “Compressive failure of fiber composites,” Adv. Appl. Mech., 33, 43–117 (1997).

    Article  MATH  Google Scholar 

  14. L. B. Greszczuk, “Microbuckling failure of lamina-reinforced composites,” in: Proc. 3rd Conf Composite Materials: Testing and Design ASTM STP, No. 546, Philadelphia (Pa) (1974), pp. 5–29.

  15. L. B. Greszczuk, “Microbuckling failure of circular fiber-reinforced composites,” AIAA J., 13, 1311–1318 (1975).

    Article  ADS  MATH  Google Scholar 

  16. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Heilberg–Berlin (1999).

    Book  MATH  Google Scholar 

  17. A. N. Guz, “On study of nonclassical problems of fracture and failure mechanics and related mechanisms,” Int. Appl. Mech., 45, No. 1, 1–31 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. A. N. Guz, “Setting up a theory of stability of fibrous and laminated composites,” Int. Appl. Mech., 45, No. 6, 587–613 (2009).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A. N. Guz, “Stability of elastic bodies under uniform compression (review),” Int. Appl. Mech., 48, No. 3, 241–293 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. N. Guz, I. A. Guz, A. V. Menshikov, and V. A. Menshikov, “Three-dimensional problems in the dynamic fracture mechanics of materials with interface cracks (review),” Int. Appl. Mech., 49, No. 1, 3–79 (2013).

    Article  MathSciNet  Google Scholar 

  21. A. N. Guz and V. A. Dekret, “On two models in three-dimensional theory of stability of composite materials,” Int. Appl. Mech., 44, No. 8, 839–854 (2008).

    Article  ADS  Google Scholar 

  22. A. N. Guz and V. A. Dekret, “Finite-fiber model in the three-dimentional theory of stability of composites (review),” Int. Appl. Mech., 52, No. 1, 1–48 (2016).

    Article  ADS  Google Scholar 

  23. A. N. Guz and Yu. V. Kokhanenko, “Numerical solution of three-dimentional stability problems for elastic bodies,” Int. Appl. Mech., 37, No. 11, 1369–1399 (2001).

    Article  ADS  Google Scholar 

  24. P. M. Jelf and N. A. Fleck, “Compression failure mechanisms in unidirectional composites,” J. Comp. Mater., 26, No. 18, 2706–2726 (1992).

    Article  Google Scholar 

  25. Yu. V. Kokhanenko and V. M. Bystrov, “Edge effect in a laminated composite with longitudionally compressed laminas,” Int. Appl. Mech., 42, No. 8, 922–927 (2006).

    Article  ADS  Google Scholar 

  26. N. K. Naik and R. S. Kumar, “Compressive strength of unidirectional composites: evaluation and comparison of prediction models,” Compos. Struct., 46, 299–308 (1999).

    Article  Google Scholar 

  27. M. D. Nestorovic and N. Triantafyllidis, “Onset of failure in finitely strained layered composites subjected to combined normal and shear loading,” J. Mech. Phys. Solids, 52, 941–974 (2004).

    Article  ADS  MATH  Google Scholar 

  28. S. Pissanetzky, Sparse Matrix Technology, Academic Press, London (1984).

    MATH  Google Scholar 

  29. B. W. Rosen, “Mechanics of composite strengthening,” in: Fiber Composite Materials, American Society of Metals, Metals Park, OH (1965), pp. 37–75.

  30. C. Soutis, Compressive Behavior of Composites, Rapra Technology Ltd, United Kingdom (1997).

    Google Scholar 

  31. N. Triantafyllidis and W.C. Scynaidt, “Ñomparison of microscopic and macroscopic instabilities in a class of two-dimensional periodic composites,” J. Mech. Phys. Solids, 41, No. 9, 1533–1565 (1993).

    Article  ADS  MATH  Google Scholar 

  32. T. J. Vogler, S.-Y. Hsu, and S. Kyriakides, “Composite failure under combined compression and shear,” Int. J. Solids Struct., 37, No. 12, 1765–1791 (2000).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Bystrov.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 53, No. 2, pp. 49–58, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bystrov, V.M., Dekret, V.A. & Zelenskii, V.S. Loss of Stability in a Composite Laminate Compressed by a Surface Load. Int Appl Mech 53, 156–163 (2017). https://doi.org/10.1007/s10778-017-0801-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-017-0801-y

Keywords

Navigation