Skip to main content
Log in

Hermitian Hulls of Constacyclic Codes and A New Family of Entanglement-Assisted Quantum MDS Codes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Let q be an odd prime power and n = (q2 + 1)/2. Through a new idea to present the defining set and a new proof technology with induction and skew asymmetric cosets pairs, we construct a family of maximum distance separable (MDS) codes of length n via constacyclic codes, and determine the dimensions of their Hermitian hulls. Furthermore, from these MDS codes we obtain some new entanglement-assisted quantum maximum-distance-separable (EAQMDS) codes with flexible parameters [[(n,n − 2d + c + 2,d;c]], where d = d1(q − 1) + 2d0 + 3, \(c=2d_{1}(d_{1}-1)+4\delta _{d_{1},d_{0}}\), 0 ≤ d1 ≤ (q − 1)/2, 0 ≤ d0 ≤ (q − 3)/2, \(\delta _{d_{1},d_{0}}=d_{0}+1\) if d1d0 + 2 and \(\delta _{d_{1},d_{0}}=d_{1}\) if d1d0 + 1. The EAQMDS codes have new parameters with odd k,d and even c, which differ completely from all the previous [[n,k,d;c]] EAQMDS codes (even k,d and odd c) with the same length n = (q2 + 1)/2. Specially, when d1 = 0 and d = 2d0 + 3, the above codes are quantum maximum-distance-separable (QMDS) codes with parameters [[(n,n − 2d + 2,d]] and odd 3 ≤ dq, which are equivalent to the QMDS codes constructed by Kai and Zhu from negacyclic codes (IEEE Trans. Inf. Theory. 59(2), 1193–1197 38). So, in the sense of equivalence, the QMDS codes constructed by Kai and Zhu are special cases of our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus, E.F., Key, J.D.: Designs and Their Codes. Cambridge Univ Press, Cambridge (1993)

  2. Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory. IT-28(3), 496–511 (1982)

    Article  MathSciNet  Google Scholar 

  3. Leon, J.S.: Permutation group of algorithms based on partitions, I: Theory and algorithms. J. Symbolic Comput. 12, 533–583 (1991)

    Article  MathSciNet  Google Scholar 

  4. Leon, J.S.: Finding the permutaiton between equivalent binary codes. Proc. IEEE ISIT, Ulm, Germany. Jun./Jul. 367 (1997)

  5. Sendrier, N.: Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Trans. Inf. Theory. 46(4), 1193–1203 (2000)

    Article  MathSciNet  Google Scholar 

  6. Brun, T., Devetak, I., Hsieh, M.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Gao, Y., Yue, Q., Huang, X., Zhang, J.: Hulls of generalized Reed-Solomon codes via goppa codes and their applications to quantum codes. IEEE Trans. Inf. Theory. 67(10), 6619–6626 (2021)

    Article  MathSciNet  Google Scholar 

  8. Sok, L.: On linear codes with one-dimensional euclidean hull and their applications to EAQECCs. IEEE Trans. Inf. Theory. 68(7), 4329–4343 (2022)

    Article  MathSciNet  Google Scholar 

  9. Fang, X., Liu, M., Luo, J.: On Euclidean hulls of MDS codes. Cryptogr. Communications. 13, 1–14 (2021)

    Article  MathSciNet  Google Scholar 

  10. Huang, Y., Li, C., Wang, Q., Du, Z.: Parameters and characterizations of hulls of some projective narrow-sense BCH codes. Des. Codes Cryptogr. 90, 87–106 (2022)

    Article  MathSciNet  Google Scholar 

  11. Wu, Y., Li, C., Yang, S.: New Galois Hulls of generalized Reed-Solomon codes. Finite Fields Appl. 83, 102084 (2022)

    Article  MathSciNet  Google Scholar 

  12. Lei, Y., Li, C., Wu, Y., Zeng, P.: More results on hulls of some primitive binary and ternary BCH codes. Finite Fields Appl. 82, 102066 (2022)

    Article  MathSciNet  Google Scholar 

  13. Guenda, K., Jitman, S., Gulliver, T.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018)

    Article  MathSciNet  Google Scholar 

  14. Fujiwara, Y., Clark, D., Vandendriessche, P., Boeck, M.D., Tonchev, V.D.: Entanglement-assisted quantum low-density parity-check codes. Phys. Rev. A82, 042338 (2010)

    Article  ADS  Google Scholar 

  15. Guo, L., Li, R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A87, 032309 (2013)

    Article  ADS  Google Scholar 

  16. Hsieh, M.H., Yen, W.T., Hsu, L.Y.: High performance entanglement-assisted quantum LDPC codes need little entanglement. IEEE Trans. Inf. Theory. 57(3), 1761–1769 (2011)

    Article  MathSciNet  Google Scholar 

  17. Liu, X., Yu, L., Hu, P.: New entanglement-assisted quantum codes from k-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019)

    Article  MathSciNet  Google Scholar 

  18. Luo, G., Cao, X., Chen, X.: MDS Codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory. 65(5), 2944–2952 (2019)

    Article  MathSciNet  Google Scholar 

  19. Guo, G., Li, R.: New entanglement-assisted quantum MDS codes derived from generalized Reed-Solomon codes. Int. J. Theor. Phys. 59, 1241–1245 (2020)

    Article  MathSciNet  Google Scholar 

  20. Li, R., Zuo, F., Liu, Y.: A study of skew asymmetric q2-cyclotomic coset and its application. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 12(1), 87–89 (2011). ((in Chinese))

    Google Scholar 

  21. Lü, L., Li, R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(03), 1450015 (2014)

    Article  MathSciNet  Google Scholar 

  22. Fan, J., Chen, H., Xu, J.: Construction of q-ary entanglement-assisted quantum MDS codes with minimum distance greater than q + 1. Quant. Inf. Comput. 16(5/6), 0423–0434 (2016)

    MathSciNet  Google Scholar 

  23. Chen, J., Huang, Y., Feng, C., Chen, R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quant. Inf. Process. 16(303), 1–22 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Lu, L., Ma, W., Li, R., Ma, Y., Liu, Y., Cao, H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018)

    Article  MathSciNet  Google Scholar 

  25. Koroglu, M.E.: New entanglement-assisted MDS quantum codes from constacyclic codes. Quant. Inf. Process. 18, 44 (2019). https://doi.org/10.1007/s11128-018-2155-8

    Article  ADS  MathSciNet  Google Scholar 

  26. Lu, L., Ma, W., Li, R., Cao, H., Ren, J.: Two families of entanglement-assisted quantum MDS codes from cyclic codes. Int. J. Theor. Phys. 60, 1833–1842 (2021)

    Article  MathSciNet  Google Scholar 

  27. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018)

    Article  MathSciNet  Google Scholar 

  28. Qian, J., Zhang, L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quant. Inf. Process. 18, 71 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. Jiang, W., Zhu, S., Chen, X.: New EAQMDS codes constructed from negacyclic codes. Quant. Inf. Process. 19, 424 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Pang, B., Zhu, S., Li, F., Chen, X.: New entangement-assisted quantum MDS codes with larger mimimum distance. Quant. Inf. Process. 19, 207 (2020)

    Article  ADS  Google Scholar 

  31. Chen, X., Zhu, S., Jiang, W., Luo, G.: A new family of EAQMDS codes constructed from constacyclic codes. Des. Codes Cryptogr. 89, 2179–2193 (2021)

    Article  MathSciNet  Google Scholar 

  32. Chen, X., Zhu, S., Jiang, W., Pang, B.: Four classes of new entanglement-assisted quantum optimal codes. J. Appl. Math. Comp. 67, 937–952 (2021)

    Article  MathSciNet  Google Scholar 

  33. Chen, X., Zhu S., Jiang, W.: Cyclic codes and some new entanglement-assisted quantum MDS codes. Des. Codes Cryptogr. 89, 2533–2551 (2021)

    Article  MathSciNet  Google Scholar 

  34. Sarı, M., Köroˇğlu, M.E.: New entanglement-assisted quantum MDS codes. Int. J. Theor. Phys. 60, 243–253 (2021). https://doi.org/10.1007/s10773-020-04682-z

    Article  MathSciNet  Google Scholar 

  35. Gao, N., Li, J., Huang, S.: Hermitian hulls of constacyclic codes and their applications to quantum codes. Int. J. Theor. Phys. 61, 57 (2022)

    Article  MathSciNet  Google Scholar 

  36. Krishna, A., Sarwate, D.V.: Pseudo-cyclic maximum-distance separable codes. IEEE Trans. Inf. Theory. 36(4), 880–884 (1990)

    Article  Google Scholar 

  37. Aydin, N., Siap, I., Ray-Chaudhuri, D.K.: The structure of 1-generator quasi-twisted codes and new linear codes. Des. Codes Cryptogr. 24, 313–326 (2001)

    Article  MathSciNet  Google Scholar 

  38. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory. 59(2), 1193–1197 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (No.22CX03015A, No.20CX05012A), the Major Scientific and Technological Projects of CNPC under Grant(No.ZD2019-183-008) and the National Natural Science Foundation of China (No. 61902429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Sun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Song, Y. & Yan, T. Hermitian Hulls of Constacyclic Codes and A New Family of Entanglement-Assisted Quantum MDS Codes. Int J Theor Phys 61, 224 (2022). https://doi.org/10.1007/s10773-022-05216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05216-5

Keywords

Navigation