Skip to main content
Log in

Exploring the Effects of Intrinsic Decoherence on Quantum-Memory-Assisted Entropic Uncertainty Relation in a Heisenberg Spin Chain Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the influence of the intrinsic decoherence on the Quantum-Memory-Assisted Entropic Uncertainty Relation (QMA-EUR) and quantum correlations in a two-qubit XX Heisenberg spin chain coupled to Dzyaloshinskii-Moriya (DM) interaction and subjected to an external non-homogeneous magnetic field. To quantify the quantum correlations presented in our bipartite system, we consider the local quantum uncertainty (LQU) to measure discord-like correlations and the concurrence (C) to detect entanglement. Then, we have revealed that quantum correlations and entropic uncertainty are typically anticorrelated when the system is prepared initially in a pure state. Significantly, we show promising features on the behaviours of quantum correlations and the entropic uncertainty in terms of the system parameters in a variety of initial states. Indeed, we can improve quantum correlations and reduce entropic uncertainty with the control of both DM interaction and the external magnetic field, which is of fundamental importance for quantum precision measurement during quantum information processing, particularly in the context of spin solid-state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Werner, H.: Über Den Anschaulichen Inhalt Der Quantentheoretischen Kinematik Und Mechanik. In: Original Scientific Papers Wissenschaftliche Originalarbeiten, pp. 478–504. Springer (1985)

  2. collab=Iwo Bialynicki-Birula: Rényi entropy and the uncertainty relations. In: AIP Conference Proceedings, Vol. 889, pp. 52–61. American Institute of Physics (2007)

  3. Kennard, E.H.: Zur quantenmechanik einfacher bewegungstypen. Zeitschrift für Physik 44(4), 326–352 (1927)

    Article  ADS  MATH  Google Scholar 

  4. Howard, P.R.: The uncertainty principle. Phys. Rev. 34(1), 163 (1929)

    Article  Google Scholar 

  5. Coles, P.J., Berta, M., Tomamichel, M., Wehner, S.: Entropic uncertainty relations and their applications. Reviews of Modern Physics 89(1), 015002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. David, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50(9), 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  7. Karl, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35(10), 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  9. Rastegin, A.E.: Entropic uncertainty relations for successive measurements of canonically conjugate observables. Ann. Phys. 528(11-12), 835–844 (2016)

    Article  MATH  Google Scholar 

  10. Wang, D., Huang, Ai-Jun, Hoehn, R.D, Ming, F., Sun, W.-Y., Shi, J.-D., Ye, L., Kais, S.: Entropic uncertainty relations for Markovian and non-Markovian processes under a structured bosonic reservoir. Scientific Reports 7(1), 1–11 (2017)

    ADS  Google Scholar 

  11. Berta, M., Christandl, M., Colbeck, R., Renes, J.M, Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6 (9), 659–662 (2010)

    Article  Google Scholar 

  12. Prevedel, R., Hamel, D.R, Colbeck, R., Fisher, K., Resch, K.J: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7(10), 757–761 (2011)

    Article  Google Scholar 

  13. Li, C.-F., Xu, J.-S., Xu, X.-Y., Li, K., Guo, G.-C.: Experimental investigation of the entanglement-assisted entropic uncertainty principle. Nat. Phys. 7 (10), 752–756 (2011)

    Article  Google Scholar 

  14. Nielsen, M.A, Chuang, I.: Quantum computation and quantum information. Cambridge University Press (2002)

  15. Huang, A.-J., Shi, J.-D., Wang, D., Ye, L.: Steering quantum-memory-assisted entropic uncertainty under unital and nonunital noises via filtering operations. Quantum Inf. Process. 16(2), 46 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Pati, A.K., Wilde, M.M., Usha Devi, A.R., Rajagopal, A.K., et al.: Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory. Phys. Rev. A 86(4), 042105 (2012)

    Article  ADS  Google Scholar 

  17. Pramanik, T., Chowdhury, P., Majumdar, A.S.: Fine-grained lower limit of entropic uncertainty in the presence of quantum memory. Phys. Rev. Lett. 110(2), 020402 (2013)

    Article  ADS  Google Scholar 

  18. Schrödinger, E.: Discussion of probability relations between separated systems. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, pp. 555–563 (1935)

  19. Niels, B.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48(8), 696 (1935)

    Article  MATH  Google Scholar 

  20. Bell, J.S.: On the einstein podolsky rosen paradox. Phys. 1(3), 195 (1964)

    Article  MathSciNet  Google Scholar 

  21. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)

    Article  ADS  MATH  Google Scholar 

  22. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101(20), 200501 (2008)

    Article  ADS  Google Scholar 

  23. Datta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75(4), 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110(24), 240402 (2013)

    Article  ADS  Google Scholar 

  25. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  26. Henderson, L., Vedral, V.: Classical, quantum and total correlations. Journal of Physics A: Mathematical and General 34(35), 6899 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Huang, Y.: Computing quantum discord is NP-complete. New J. Phy. 16(3), 033027 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Piani, M.: Problem with geometric discord. Phys. Rev. A 86(3), 034101 (2012)

    Article  ADS  Google Scholar 

  29. Carrijo, T.M., Avelar, A.T., Céleri, L.C.: Quantum uncertainty in critical systems with three spins interaction. Journal of Physics B: Atomic, Molecular and Optical Physics 48(12), 125501 (2015)

    Article  ADS  Google Scholar 

  30. Coulamy, I.B., Warnes, J.H., Sarandy, M.S., Saguia, A.: Scaling of the local quantum uncertainty at quantum phase transitions. Phys. Lett. A 380 (20), 1724–1728 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wigner, E.P, Yanase, M.M: Information contents of distributions. In: Part I: Particles and Fields. Part II: Foundations of Quantum Mechanics, pp. 452–460. Springer (1997)

  32. Paris, M.G.A.: Quantum estimation for quantum technology. International Journal of Quantum Information 7(supp01), 125–137 (2009)

    Article  MATH  Google Scholar 

  33. Jebli, L., Benzimoun, B., Daoud, M.: Quantum correlations for two-qubit X states through the local quantum uncertainty. International Journal of Quantum Information 15(03), 1750020 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Khedif, Y., Daoud, M.: Local quantum uncertainty and trace distance discord dynamics for two-qubit X states embedded in non-Markovian environment. International Journal of Modern Physics B 32(20), 1850218 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Habiballah, N., Khedif, Y., Daoud, M.: Local quantum uncertainty in XY Z Heisenberg spin models with Dzyaloshinski–Moriya interaction. The European Physical Journal D 72(9), 1–8 (2018)

    Article  Google Scholar 

  36. Slaoui, A., Bakmou, L., Daoud, M., Ahl Laamara, R.: A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model. Phys. Lett. A 383(19), 2241–2247 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wojciech, H.Z.: Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 75(3), 715 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schlosshauer, M.A.: Decoherence: and the quantum-to-classical transition. Springer Science & Business Media (2007)

  39. Isar, A., Sandulescu, A., Scutaru, H., Stefanescu, E., Scheid, W.: Open quantum systems. International Journal of Modern Physics E 3(02), 635–714 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  40. Breuer, H.-P., Petruccione, F., et al.: The theory of open quantum systems. Oxford University Press on Demand (2002)

  41. Moya-Cessa, H., Bužek, V., Kim, M.S., Knight, P.L.: Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 48(5), 3900 (1993)

    Article  ADS  Google Scholar 

  42. Zhang, G.-F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Phys. Rev. A 75(3), 034304 (2007)

    Article  ADS  Google Scholar 

  43. Zhang, Y., Zhou, Q., Xu, H., Fang, M.: Quantum-Memory-Assisted Entropic uncertainty in Two-Qubit heisenberg XX spin chain model. Int. J. Theor. Phys. 58(12), 4194–4207 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chlih, A.A., Habiballah, N., Nassik, M.: Dynamics of quantum correlations under intrinsic decoherence in a Heisenberg spin chain model with Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 20(3), 1–14 (2021)

    MathSciNet  Google Scholar 

  45. Kane, B.E.: A silicon-based nuclear spin quantum computer. Nature 393(6681), 133–137 (1998)

    Article  ADS  Google Scholar 

  46. Sanders, G.D., Kim, K.W., Holton, W.C.: Scalable solid-state quantum computer based on quantum dot pillar structures. Phys. Rev. B 61(11), 7526 (2000)

    Article  ADS  Google Scholar 

  47. Wang, D., Huang, A., Ming, F., Sun, W., Lu, H., Liu, C., Ye, L.: Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field. Laser Phys. Lett. 14(6), 065203 (2017)

    Article  ADS  Google Scholar 

  48. Huang, A.-J., Wang, D., Wang, J.-M., Shi, J.-D., Sun, W.-Y., Ye, L.: Exploring entropic uncertainty relation in the Heisenberg XX model with inhomogeneous magnetic field. Quantum Inf. Process. 16(8), 1–11 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Igor, D.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4(4), 241–255 (1958)

    Article  Google Scholar 

  50. Tôru, M.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120(1), 91 (1960)

    Article  Google Scholar 

  51. Zheng, X., Zhang, G.-F.: The effects of mixedness and entanglement on the properties of the entropic uncertainty in Heisenberg model with Dzyaloshinski–Moriya interaction. Quantum Inf. Process. 16(1), 1–14 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Ming, F., Wang, D., Shi, W.-N., Huang, A.-J., Du, M.-M., Sun, W.-Y., Ye, L.: Exploring uncertainty relation and its connection with coherence under the Heisenberg spin model with the Dzyaloshinskii–Moriya interaction. Quantum Inf. Process. 17(10), 1–16 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Zhang, Y., Zhou, Q., Fang, M., Kang, G., Li, X.: Quantum-memory-assisted entropic uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii–Moriya interactions and effects of intrinsic decoherence. Quantum Inf. Process. 17 (12), 1–23 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Zhang, Y., Zhou, Q., Kang, G., Fang, M.: The dynamics of Quantum-Memory-Assisted entropic uncertainty of Two-Qubit system in the XY spin chain environments with Dzyaloshinsky-Moriya interaction. Int. J. Theor. Phys. 60(1), 402–419 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zidan, N.: Entropic uncertainty in spin XY model with Long-Range interactions. Entropy 22(8), 837 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  56. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44(9), 5401 (1991)

    Article  ADS  Google Scholar 

  57. Xu, J.-B., Zou, X.-B.: Dynamic algebraic approach to the system of a three-level atom in the Λ configuration. Phys. Rev. A 60(6), 4743 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  58. Obada, A.-S.F., Hessian, H.A.: Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model. JOSA B 21 (8), 1535–1542 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  59. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(18), 180403 (2003)

    Article  ADS  Google Scholar 

  60. Jebli, L., Amzioug, M., Ennadifi, S., Habiballah, N., Nassik, M.: Effect of weak measurement on quantum correlations. Chinese Phys. B 29(11), 110301 (2020)

    Article  ADS  Google Scholar 

  61. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the discussion, results analysis and interpretation.

Corresponding author

Correspondence to Anas Ait Chlih.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Chlih, A., Habiballah, N. & Nassik, M. Exploring the Effects of Intrinsic Decoherence on Quantum-Memory-Assisted Entropic Uncertainty Relation in a Heisenberg Spin Chain Model. Int J Theor Phys 61, 49 (2022). https://doi.org/10.1007/s10773-022-05001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05001-4

Keywords

Navigation