Skip to main content
Log in

Improving Teleportation of Quantum Fisher Information and Fidelity for Entangled State Under Decoherent Channel

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In virtue of weak measurement and measurement reversal, we have studied the improvement of teleportation of a two-qubit entangled state through quantum channels with decoherence. We mainly concern two aspects. One is the teleportation of the whole quantum state quantified by fidelity, the other is transmission of information encoded in the teleported state evaluated by quantum Fisher information (QFI). The significant similarities and differences between the teleported QFI and fidelity are analyzed in detail. We show that the enhancement of teleported QFI and fidelity can be achieved by weak measurement with optimal measurement reversal. Improving QFI teleportation is more efficient than improving fidelity, since the former has higher success probabilities under the same condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C, Jozsa, R., Peres, A., Wootters, W.K.: . Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: . Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  3. Riebe, M., Häffner, H., Roos, C.F., Hänsel, W., Benhelm, J., et al.: . Nature (London) 429, 734 (2004)

    Article  ADS  Google Scholar 

  4. Barrett, M.D., Chiaverini, J., Schaetz, T., Britton, J., Itano, W.M., et al.: . Nature (London) 429, 737 (2004)

    Article  ADS  Google Scholar 

  5. Olmschenk, S., Matsukevich, D.N., Maunz, P., Hayes, D., Duan, L.M., Monroe, C.: . Science 323, 486 (2009)

    Article  ADS  Google Scholar 

  6. Pfaff, W., Hensen, B.J., Bernien, H., van Dam, S.B., Blok, M.S., et al.: . Science 345, 532 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  7. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Liu, C.Y., Pan, J.W.: . Nature (London) 518, 516 (2015)

    Article  ADS  Google Scholar 

  8. Takesue, H., Dyer, S.D., Stevens, M.J., Verma, V., Mirin, R.P., Nam, S.W.: . Optica 2, 832 (2015)

    Article  ADS  Google Scholar 

  9. Kang, Y.H., Shi, Z.C., Huang, B.H., Song, J., Xia, Y.: . Phys. Rev. A 101, 032322 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yeo, Y.: . Phys. Rev. A 66, 062312 (2002)

    Article  ADS  Google Scholar 

  11. Yeo, Y.: . Phys. Rev. A 68, 022316 (2003)

    Article  ADS  Google Scholar 

  12. Yeo, Y.: . Phys. Rev. A 74, 052305 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhang, G.F.: . Phys. Rev. A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  14. Qiu, L., Tang, G., Yang, X., Wang, A.: . Ann. Phys 350, 137 (2014)

    Article  ADS  Google Scholar 

  15. Lu, X.M., Sun, Z., Wang, X., Luo, S., Oh, C.H.: . Phys. Rev. A 87, 050302 (2013)

    Article  ADS  Google Scholar 

  16. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: . Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  17. Jin, Y.: . Sci. Rep. 7, 40193 (2017)

    Article  ADS  Google Scholar 

  18. Jafarzadeh, M., Rangani Jahromi, H., Amniat-Talab, M.: . Quantum. Inf. Process 17, 165 (2018)

    Article  ADS  Google Scholar 

  19. Guo, Y.N., Zeng, K., Chen, P.X.: . Laser. Phys. Lett. 16, 125202 (2019)

    Article  ADS  Google Scholar 

  20. Fisher, R.A.: . Proc. Cambridge. Phil. Soc 22, 700 (1929)

    Article  ADS  Google Scholar 

  21. Sun, Z., Ma, J., Lu, X.M., Wang, X.: . Phys. Rev. A 82, 022306 (2010)

    Article  ADS  Google Scholar 

  22. Ma, J., Huang, Y.X., Wang, X., Sun, C.P.: . Phys. Rev. A 84, 022302 (2011)

    Article  ADS  Google Scholar 

  23. Berrada, K.: . Phys. Rev. A 88, 035806 (2013)

    Article  ADS  Google Scholar 

  24. Liu, J., Jing, X., Wang, X.: . Phys. Rev. A 88, 042316 (2013)

    Article  ADS  Google Scholar 

  25. He, Z., Yao, C.M.: . Chin. Phys. B 23, 110601 (2014)

    Article  ADS  Google Scholar 

  26. Li, Y.L., Xiao, X., Yao, Y.: . Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  27. Wu, S.X., Zhang, Y., Yu, C.S.: . Ann. Phys. 390, 71 (2018)

    Article  ADS  Google Scholar 

  28. Zheng, R.H., Kang, Y.H., Su, S.L., Song, J., Xia, Y.: . Phys. Rev. A 102, 012609 (2020)

    Article  ADS  Google Scholar 

  29. Holevo, A.S.: Statistical Structure of Quantum Theory. Spring, Berlin (2001)

    Book  MATH  Google Scholar 

  30. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  31. Braunstein, S.L., Caves, C.M.: . Phys. Phys. Lett. 72, 3439 (1994)

    Article  ADS  Google Scholar 

  32. Korotkov, A.N., Jordan, A.N.: . Phys. Rev. A 81, 040103 (2010)

    Article  ADS  Google Scholar 

  33. Korotkov, A.N., Keane, K.: . Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

  34. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: . Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  35. Man, Z.X., Xia, Y.J.: . Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  36. Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: . Phys. Rev. A 89, 022318 (2014)

    Article  ADS  Google Scholar 

  37. Xiao, X., Li, Y.L.: . Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  38. Hu, M.L.: . Ann. Phys. 327, 2332 (2012)

    Article  ADS  Google Scholar 

  39. Guo, J.L., Wei, J.L.: . Ann. Phys. 354, 522 (2015)

    Article  ADS  Google Scholar 

  40. Pramanik, T., Majumdar, A.S.: . Phys. Lett. A 377, 3209 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  41. Li, Y.L., Zu, C.J., Wei, D.M.: . Quantum. Inf. Process 18, 2 (2019)

    Article  ADS  Google Scholar 

  42. Wootter, W.K.: . Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China (Grant Nos. 11305114, 11304226, 11505126), and the Program for Innovative Research in University of Tianjin (Grant No.TD13-5077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Liang Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zhai, L. & Guo, JL. Improving Teleportation of Quantum Fisher Information and Fidelity for Entangled State Under Decoherent Channel. Int J Theor Phys 61, 22 (2022). https://doi.org/10.1007/s10773-022-04999-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04999-x

Keywords

Navigation