Skip to main content
Log in

Study on the Influence of Lorentz Dispersion Relation on Fermions Tunneling Radiation of Kerr-TAUB-NUT Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, by applying the correction of Lorentz dispersion relation, the fermion tunneling radiation of the stationary axisymmetric Kerr-TAUB-NUT black hole in curved space-time is studied. Based on the modified Lorentz dispersion relation, the revised Rarita-Schwinger equation has been obtained. Then, we get the dynamic equation of fermions via semi-classical theory, which is the modified Hamilton-Jacobi equation. So at the event horizon the tunneling radiation in the space-time of stationary axisymmetric Kerr-TAUB-NUT black hole has been effectively investigated. At last, the modified tunneling radiation and Hawking temperature have been obtained in the same space-time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. William, A.H., Lance D. W.: . Phys. Rev. D 41, 1142 (1990)

    Google Scholar 

  2. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  3. Carmeli, M., Kaye, M.: Gravitational field of a radiating rotating body. Ann. Phys. 103, 97 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  5. Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  6. Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: Hawking radiation as tunneling for extremal and rotating Black holes. JHEP 05, 014 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Parikh, M.K., Membrane, H.: The black hole’s new clothes. Thesis (PHD). Princeton Universiyt. 73, 2449 (1999)

    Google Scholar 

  8. Feng, Z.W., Yang, S.Z.: Rainbow gravity corrections to the entropic force. High Energy Phys. 10, 1155 (2017)

    Google Scholar 

  9. Parikh, M.K.: Energy conservation and hawking radiation. World Scientific 3 (2006)

  10. Ilias, H.M., Atiqur, R.M.: Hawking non-thermal and thermal radiations of Reissner Nordstrm anti-de Sitter black hole by Hamilton-Jacobi method. Astrophysics and Space Science. 347, 91 (2007)

    ADS  MATH  Google Scholar 

  11. Kraus, P.J.: Non-Thermal Aspects of black hole radiance. Section. B 56, 4947 (1995)

    Google Scholar 

  12. Kerner, B.S., Konhäuser, P.: Structure and parameters of clusters in traffic flow. Phys. Rev. E 50, 54 (1994)

    Article  ADS  Google Scholar 

  13. Parikh, M.K.: A secret tunnel through the horizon. Int. J. Mod. Phys. D 13, 2351–2354 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Kim, S.P.: Schwinger mechanism and Hawking radiation as quantum tunneling. J. Korean Phys. Soc. 53, 1095–1099 (2008)

    Article  ADS  Google Scholar 

  15. Feng, Z.W., Li, H.L., Zu, X.T., Yang, S.Z.: Quantum corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle. Eur. Phys. J. C 76, 212 (2016)

    Article  ADS  Google Scholar 

  16. Osher, S., Sethian, J.A.: Fronts propagating with Curvature-Dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Computational Phys. 79, 12 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Hawking On The Big Bang And Black Holes 8, 130 (1993)

    Article  Google Scholar 

  18. Scardigli, F.: Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Phys. Lett. B 452, 39–44 (1999)

    Article  ADS  Google Scholar 

  19. Rajagopal, A.K., Usha Devi, A.K., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian forms. Phys. Rev. A 82, 064035 (2010)

    Article  Google Scholar 

  20. Yang, S.Z., Lin, K.: Fermionss tunneling of higher-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter. Phys. Lett. B 674, 127–130 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Ding, Q.C., Feng, Z.W., Yang, S.Z.: The fermion tunneling from a slowly varying charged black hole. Int. J. Theor. Phys. 58, 1028 (2019)

    Article  MathSciNet  Google Scholar 

  22. Yang, S.Z.: Dynamics equation of spin particles in a strong gravitational field. J. Chin. West Normal Univ. (Nat. Sci.) 37, 126 (2016)

    Google Scholar 

  23. Feng, Z.W., Chen, Y., Zu, X.T.: Hawking radiation of vector particles via tunneling from 4-dimensional and 5-dimensional black holes. Astrophys. Space Sci. 359, 48 (2015)

    Article  ADS  Google Scholar 

  24. Magueijo, J., Smolin, L.: Gravity’s rainbow. Classical and Quantum Gravity 21, 1725–1736 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. Feng, Z.W., Ding, Q.C., Yang, S.Z.: Modified fermion tunneling from higher-dimensional charged AdS black hole in massive gravity. Europhys. J. C 79, 7 (2019)

    Google Scholar 

  26. Li, H.L., Feng, Z.W., Zu, X.T.: Quantum tunneling from a high dimensional Godel black hole. Gen. Relativ. Gravit. 48, 18 (2016)

    Article  ADS  Google Scholar 

  27. Yang, S.Z., Lin, K.: Black hole spacetime in generalized Rastall gravity. Scientia Sinica Phys. 49(7), 070501 (2019)

    Google Scholar 

  28. Zhang, J., Zhao, Z.: Hawking radiation of charged particles via tunneling from the reissner-nordström black hole. J. High Energy Phys. 10, 055 (2005)

    Article  ADS  Google Scholar 

  29. Nascimento, J.R., Petrov, A.Y., Reyes C.M.: . Phys. Rev. D 92, 045030 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yang, S.Z., Lin, K.: Modified fermions tunneling radiation from Kerr-Newman-de Sitter black hole. Scientia Sinica Physica 49(1), 019503 (2019)

    Google Scholar 

  31. Zeng, X.X., Hu, X.Y., He, K.J.: Weak cosmic censorship conjecture with pressure and volume in the Gauss-Bonnet AdS black hole[J]. Nuclear Phys. Section B. 949 (2019)

  32. Zeng, X.X., Han, Y.W., Chen, D.Y.: Thermodynamics and weak cosmic censorship conjecture of BTZ black holes in extended phase space[J]. Chin. Phys. C. 43(10), 116–121 (2019)

    Article  Google Scholar 

  33. Han, Y.W., Zeng, X.X., Hong, Y.: Thermodynamics and weak cosmic censorship conjecture of the torus-like black hole. Eur. Phys. J. C. 79, 252 (2019)

    Article  ADS  Google Scholar 

  34. Feng, Z.W.: Hawking radiation of massive bosons via tunneling from black strings. Int. J. Theor. Phys. 57, 931 (2018)

    Article  MathSciNet  Google Scholar 

  35. He, K.J., Hu, X.Y., Zeng, X.X.: Weak cosmic censorship conjecture and thermodynamics in quintessence Ad S black hole under charged particle absorption[J]. Chin. Phys. C. 43(12), 173–183 (2019)

    Article  Google Scholar 

  36. Zeng, X.X., Li-fang, L.: Van der Waals phase transition in the framework of holography[J]. Phys. Lett. B. 764 (2017)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments and suggestions, which helped to improve the quality of this paper. This work was supported by the National Natural Science Foundation of China (Grant No. 11573022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin-Ping Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TP., Ding, QC. & Yang, SZ. Study on the Influence of Lorentz Dispersion Relation on Fermions Tunneling Radiation of Kerr-TAUB-NUT Black Hole. Int J Theor Phys 59, 3015–3022 (2020). https://doi.org/10.1007/s10773-020-04461-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04461-w

Navigation