Skip to main content
Log in

Geometric Phases for Classical and Quantum Dynamics: Hannay Angle and Berry Phase for Loops on a Torus

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we have considered closed trajectories of a particle on a two-torus where the loops are noncontractible (poloidal and toroidal loops and knots embedded on a regular torus). We have calculated Hannay angle and Berry phase for particle traversing such loops and knots when the torus itself is adiabatically revolving. Since noncontractible loops do not enclose any area Stokes theorem has to be applied with caution. In our computational scheme we have worked with line integrals directly thus avoiding Stokes theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data accessibility statement

This work does not have any experimental data.

Notes

  1. This turned out to be the anti-symmetric partner of “deterministic friction”, a dissipative force proposed by Wilkinson [6].

  2. An informal way to define ergodicity is that the system finishes by being more or less everywhere in phase space if one waits long enough.

  3. The definition of a generic f is given in [4], \(<f>_{E}=(1/\partial _{E}{\Omega } )\int ~dz~\delta (E-h)f(z,\mathbf {R})\) where the normalization is the phase space volume on the energy shell \(\partial _{E}{\Omega } =\int ~dz~\delta (E-h)\) satisfying h(z, R) = E. The total phase space volume inside the E-shell \({\Omega } (E)=\int ~dz~\delta (E-h)\) is independent of R.

  4. I thank Professor Berry for pointing this out.

References

  1. Berry, M.V.: Proc. R. Soc. A 392, 45 (1984) ; J. Phys. A: Math. Gen. 18, 15 (1985)

    Article  ADS  Google Scholar 

  2. Hannay, J.H.: J. Phys. A: Math. Gen. 18, 221 (1985)

    Article  ADS  Google Scholar 

  3. Berry, M.V.: J. Phys. A: Math. Gen. 18, 15 (1985) ; see also M. V. Berry and J. H. Hannay, J. Phys. A: Math. Gen. 18, 221 (1985)

    Article  ADS  Google Scholar 

  4. Robbins, J.M.: J. Phys. A 27, 1179 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  5. Robbins, J.M., Berry, M.V.: Proc. R. Soc. A 436, 631 (1992) ; The initial idea was proposed in M. V. Berry, 1990, Quantum Adiabiatic Anholonomy in Anomalies, Phases and Defects; Editors U. M. Bregola, G. Marmo and G. Moradi, Bibliopolis, Naples, pages 125–181

    Article  ADS  Google Scholar 

  6. Wilkinson, M.: J. Phys. A: Math. Gen. 23, 3603 (1990)

    Article  ADS  Google Scholar 

  7. Robbins, J.M., Berry, M.V.: J. Phys. A 27, L435 (1984)

    Article  Google Scholar 

  8. Pancharatnam, S.: Generalized theory of interference, and its applications. Part I. Coherent pencils. Proc. Indiana Acad. Sci. A 44, 247–62 (1956)

    Article  MathSciNet  Google Scholar 

  9. Aharanov, Y., Bohm, D.: Phys. Rev. 115, 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  10. Shapere, A., Wilczek, F. (eds.): Geometric Phases in Physics. World Scientific, Singapore (1989)

  11. Chruscinski, D.: Open Sys. Inf. Dyn. 13, 67–74 (2006). arXiv:quant-ph/0406026

    Article  Google Scholar 

  12. Zanardi, P., Rasetti, M.: Phys. Lett. A 264, 94 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  13. Pachos, J., Zanardi, P., Rasetti, M.: Phys. Rev. A 61, 010305(R) (2000)

    Article  ADS  MathSciNet  Google Scholar 

  14. Pachos, J., Zanardi, P.: Int. J. Mod. Phys. B 15, 1257 (2001)

    Article  ADS  Google Scholar 

  15. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: Science 292, 472 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  16. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Nature 403, 869 (2000)

    Article  ADS  Google Scholar 

  17. Lu, L., Joannopoulos, J.D., Soljacic, M.: Nat. Photon. 8, 821–829 (2014). https://doi.org/10.1038/nphoton.2014.248. arXiv:1408.6730 [physics.optics]

    Article  ADS  Google Scholar 

  18. Khein, A., Nelson, D.F.: Am. J. Phys. 61, 170 (1993). https://doi.org/10.1119/1.17332

  19. Song, D.-Y.: Phys. Rev. A 59(4) (1998). https://doi.org/10.1103/PhysRevA.59.2616

  20. Golin, S., Marmi, S.: Nonlinearity 3, 507–518 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  21. Golin, S., Knauf, A., Marmi, S.: Non linear dynamics. In: Turchetti, G. (ed.) 30 May–3 June Bologna 1988, p. 200. World Scientific, Singapore (1989)

  22. Golin, S., Knauf, A., Marmi, S.: Comm. Math. Phys. 123, 95 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  23. Golin, S., Marmi, S.: Europhys Lett. 8, 399 (1989)

    Article  ADS  Google Scholar 

  24. San Miguel, A.: Cel. Mech. Dyn. Astr. 62, 395 (1995) ; see also A. Morbidelli, (2002) Modern celestial mechanics: aspects of solar system dynamics (London: Taylor and Francis)

    Article  ADS  MathSciNet  Google Scholar 

  25. Spallicci, A., Morbidelli, A., Metris, G.: Nonlinearity 18, 45 (2005). arXiv:astro-ph/0312551

    Article  ADS  MathSciNet  Google Scholar 

  26. Berry, M.V., Morgan, M.A.: Nonlinearity 9, 787 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  27. Spallicci, A.: Nuovo Cim. B 119, 1215 (2004). https://doi.org/10.1393/ncb/i2004-10214-7. arXiv:astro-ph/0409471

    ADS  MathSciNet  Google Scholar 

  28. Gurevich, S., Hadani, R.: The Multidimensional Berry-Hannay Model. arXiv:math-ph/0403036. On Berry-Hannay Equivariant Quantization of the Torus, arXiv:math-ph/math-ph/0312039

  29. Wegrowe, J.-E., Olive, E.: Geometrical phase and inertial regime of the magnetization: Hannay angle and magnetic monopole. Proc. SPIE 9551, Spintronics VIII, 95511I (September 11, 2015); https://doi.org/10.1117/12.2191127

  30. Hannay, J.H. private communications

  31. Ghosh, S.: Int. J. Geom. Meth. Mod. Phys. 15(06), 1850097 (2018)

    Article  Google Scholar 

  32. See for example Colin C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. Providence: American Mathematical Society, 2001

  33. Oberti, C.: Induction effects of torus knots and unknots, Ph.D. thesis (2015)

  34. Sreedhar, V.V.: Ann. Phys. https://doi.org/10.1016/j.aop.2015.04.004. arXiv:1501.01098

  35. Das, P., Pramanik, S., Ghosh, S.: Ann. Phys. 374, 67 (2016). arXiv:1511.09035

    Article  ADS  Google Scholar 

  36. The situations where noncontractibility plays an essential role arise when the curvature vanishes and yet there are still nontrivial anholonomies. In this case, they are called monodromies, meaning the absence of a smoothly varying set of quantum numbers that characterize the system.The monodromy of a closed loop depends only on its homotopy class and constitute a representation (possibly nonabelian) of the fundamental group. In an early work Robbins and Berry [7] have provided an example of Berry phase for spin system in magnetic field that reverses in direction and thus completes half a cycle without enclosing any area. It was shown that for m = 0 spin state the Berry phase vanished for trivial (contractible) cycles whereas it is non-zero for non-trivial cycles. I thank Professor Berry for informing me about this reference

  37. Gaveau, B., Nounou, A.M., Schulman, L.S.: Found Phys. 41, 1462–1474 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  38. Singleton, D., Vagenas, E.C.: Phys. Lett. B 723, 241 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  39. Rousseaux, G., Kofman, R., Minazzoli, O.: Eur. Phys. J. D 49, 249 (2008)

    Article  ADS  Google Scholar 

  40. Moulopoulos, K.: J. Phys. A 43, 354019 (2010)

    Article  MathSciNet  Google Scholar 

  41. Moulopoulos, K.: J. Mod. Phys. 2, 1250 (2011)

    Article  Google Scholar 

  42. Macdougall, J., Singleton, D.: J. Math. Phys. 55, 042101 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. Smirnov, D., Schmidt, H., Haug, R.J.: Appl. Phys. Lett. 100, 203114 (2012)

    Article  ADS  Google Scholar 

  44. Chuang, C., Fan, Y.C., Jin, B.Y.: Procedia Eng. 14, 2373 (2011)

    Article  Google Scholar 

  45. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  Google Scholar 

  46. Anandan, J., Suzuki, J.: Quantum mechanics in a rotating frame. In: Rizzi, G., Ruggiero, M.L. (eds.) Relativity in Rotating Frames. Kluwer Academic Publishers (2003). arXiv:quant-ph/0305081

  47. da Silva, L.C.B., Bastos, C.C., Ribeiro, F.G.: Ann. Phys. 379, 13 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Professor John Hannay for many helpful correspondences and concrete suggestions. Also I am grateful to Professor Michael Berry for comments. Also I thank the referee for the constructive comments and suggestions.

Funding

This work was not supported by any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

There is only one author.

Corresponding author

Correspondence to Subir Ghosh.

Ethics declarations

Ethics statement

This work did not involve any active collection of human data.

Competing interests

We have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S. Geometric Phases for Classical and Quantum Dynamics: Hannay Angle and Berry Phase for Loops on a Torus. Int J Theor Phys 58, 2859–2871 (2019). https://doi.org/10.1007/s10773-019-04169-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04169-6

Keywords

Navigation