Skip to main content
Log in

A Geometric Characterization of Quantum Gates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum gates are unitary operators and pure states are denoted by unit vectors in state spaces. A quantum gate (i.e., unitary operator) maps convex combinations of vectors in the closed unit ball of the state space to themselves. On the contrary, whether or not some kinds of convex combinations preserving maps on the closed unit ball of the state space are unitary. In the paper, we devote to giving an answer to the inverse problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37, 823 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jauch, J.M.: Foundations of Quantum Mechanics. Addison Wesley, Reading (1968)

    MATH  Google Scholar 

  3. Stueckelberg, E.C.G.: Quantum theory in real Hilbert Space. Helv. Phys. Acta 33, 727 (1960)

    MathSciNet  MATH  Google Scholar 

  4. Stueckelberg, E.C.G., Guenin, M.: Quantum theory in real Hilbert Space II (Addenda and Errata). Helv. Phys. Acta 34, 621 (1961)

    MATH  Google Scholar 

  5. Uhlhorn, U.: Representation of symmetry transformations in quantum mechanics. Ark. Fysik 23, 307–340 (1963)

    MATH  Google Scholar 

  6. Wigner, E.P.: Group Theory: and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    MATH  Google Scholar 

  7. Molnár, L.: Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn’s version of Wigner’s theorem. J. Funct. Anal. 194, 248–262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sěmrl, P.: Applying projective geometry to transformations on rankone idempotents. J. Funct. Anal. 210, 248–257 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: an Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  11. Alfsen, E., Shultz, F.: Unique decompositions, faces, and automorphisms of separable states. J. Math. Phys. 51, 052201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Friedland, S., Poon, C.-K., Li, Y.-T., Sze, N.-S.: The automorphism group of separable states in quantum information theory. J. Math. Phys. 52, 042203 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hou, J.C.: A characterization of positive linear maps and criteria of entanglement for quantum states. J. Phys. A: Math. Theor. 43, 385201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ariyawansa, K.A., Davidon, W.C., McKennon, K.D.: A characterization of convexity-preserving maps from a subset of a vector space into another vector space. J. Lond. Math. Soc. 64(1), 179–190 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Meyer, W., Kay, D.C.: A convexity structure admits but one real linearization of dimension greater than one. J. Lond. Math. Soc. 2(1), 124–130 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Molnár, L.: Characterizations of the automorphisms of Hilbert space effect algebras. Commun. Math. Phys. 223, 437–450 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Molnár, L.: On some automorphisms of the set of effects on Hilbert space. Lett. Math. Phys. 51, 37–45 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Molnár, L., Timmermann, W.: Mixture preserving maps on von Neumann algebra effects. Lett. Math. Phys. 79, 295–302 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. He, K., Hou, J., Li, C.: A geometric characterization of invertible quantum measurement maps. J. Funct. Anal. 264(2), 464–478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hou, J., Liu, L.: Quantum measurement and maps preserving convex combinations of separable states. J. Phys. A: Math. Theor. 45, 205305 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Pǎles, Z.: Characterization of segment and convexity preserving maps, preprint

  22. Faure, C.A.: An elementary proof of the fundamental theorem of projective geometry. Geom. Dedicata 90, 145–151 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks for comments. The authors declare that there is no conflict of interest regarding the publication of this paper. The work is supported by National Science Foundation of China under Grant No. 11771011 and Natural Science Foundation of Shanxi Province under Grant No. 201701D221011, 201601D021009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YB., Wang, L. A Geometric Characterization of Quantum Gates. Int J Theor Phys 58, 2218–2227 (2019). https://doi.org/10.1007/s10773-019-04112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04112-9

Navigation