Skip to main content
Log in

Multi-Bits Transfer Based on the Quantum Three-Stage Protocol with Quantum Error Correction Codes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper presents a multi-bits transfer quantum protocol based on the three-stage quantum cryptography in which both parties use their own secret keys. In addition, a quantum three-stage protocol emerging with quantum error correction code is proposed. Finally, a cost comparison between the multi-bits transfer quantum protocol and the original three-stage quantum cryptography protocol is analyzed to show that our protocol has better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Von Neumann, J.: Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  2. Feynman, R.P., Leighton, R.B., Sands, M.: Lectures on Physics, vol. III. Quantum mechanics. Addison-Wesley, Reading (1965)

    MATH  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 6 (1982)

    Article  MathSciNet  Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation discrete logarithms and factoring, pp 124–134. IEEE Computer Society Press, Washington (1994)

    Google Scholar 

  6. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  7. Nguyen, D.M., Kim, S.: Quantum key distribution protocol based on modified generalization of Deutsch-Jozsa algorithm in d-level quantum system. Int. J. Theor. Phys. 58, 1 (2019)

  8. Gaitan, F.: Quantum error correction and fault tolerant quantum computing. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  9. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493 (1995)

    Article  ADS  Google Scholar 

  10. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1997)

  12. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J Cryptol 5(1), 3–28 (1992)

    Article  MATH  Google Scholar 

  13. Cai, Q.Y.: The ping-pong protocol can be attacked without eavesdropping. Phys. Rev. Lett., 91 (2003)

  14. Kak, S.: A three-stage quantum cryptography protocol. Found Phys Lett 19, 293 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mandal, S., et al.: Multi-photon implementation of three-stage quantum cryptography protocol. The International Conference on Information Networking (ICOIN) (2013)

  16. Chan, K.W.C., Rifai, M.El., Verma, P.K., Kak, S.C., Chen, Y.: Security analysis of the multi-photon three-stage quantum key distribution. International Journal on Cryptography and Information Security (IJCIS), 5(3/4) (2015)

  17. Parakh. A., van Brandwijk, J.: Correcting rotational errors in three stage QKD. In: 23rd International Conference on Telecommunications (ICT) (2016)

  18. Thapliyal, K., Pathak, A.: Kak’s three-stage protocol of secure quantum communication revisited: hitherto unknown strengths and weaknesses of the protocol. Quantum Inf Process 17, 229 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Abdullah, A.A., Khalaf, R., Riza, M.: A realizable quantum Three-Pass protocol authentication based on Hill-Cipher algorithm. Math. Probl. Eng., 2015 (2015)

  20. Nguyen, D.M., Kim, S.: Minimal-entanglement entanglement-assisted quantum error correction codes from modified circulant matrices. Symmetry 9(7), 122 (2017)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, D.M., Kim, S.: Construction and complement circuit of a quantum stabilizer code with length 7. In: Proceedings of 8th International Conference on Ubiquitous and Future Networks (2016)

  22. Nguyen, D.M., Kim, S.: Quantum stabilizer codes construction from hermitian Self-Orthogonal codes over GF(4). J. Commun. Netw. 20(3), 209–315 (2017)

    Google Scholar 

  23. Devitt, S.J., Munro, W.J., Nemoto, K.: Quantum error correction for beginners. Reports on Progress in Physics. 76(7) (2013)

Download references

Acknowledgements

This work was supported by the Research Program through the National Research Foundation of Korea (NRF-2016R1D1A1B03934653, NRF-2019R1A2C1005920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghwan Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D., Kim, S. Multi-Bits Transfer Based on the Quantum Three-Stage Protocol with Quantum Error Correction Codes. Int J Theor Phys 58, 2043–2053 (2019). https://doi.org/10.1007/s10773-019-04098-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04098-4

Keywords

Navigation