Skip to main content
Log in

Hermite Polynomial’s Photon Added Coherent State and its Non-classical Properties

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we will present the Hermite polynomial’s photon added coherent state (HPPACS), which can be obtained by superposing the photon-added coherent states(PACS) in the form of Hermite polynomial . Some quantum statistical properties of the introduced HPPACS, such as the Q-function, photon-number distribution, etc., are investigated. Meanwhile, we also give some profound squeezing properties of the HPPACS through its position distribution, quadrature squeezing and the degree of squeezing. Finally, the fidelity between the squeezed coherent state (SCS) and the HPPACS will be investigated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Phys. Rev. Lett. 83, 3081 (1999)

    Article  ADS  Google Scholar 

  2. Schumacher, B., Nielsen, M.A.: Phys. Rev. A54, 2629 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Braunstein, S.L., D’ Ariano, G.M., Milburn, G.J., Sacchi, M.F.: Phys. Rev. Lett. 84, 3486 (2000)

    Article  ADS  Google Scholar 

  4. Braunstein, S.L., Kimble, H.J.: Phys. Rev. A 61, 042–302 (2000)

    Article  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Ren, G., Du, J.M., Yu, H.J., Xu, Y.J.: J. Opt. Soc. Am. B 29, 3412 (2012)

    Article  ADS  Google Scholar 

  7. Embacher, F., Narnhofer, H.: Ann. Phys. 311, 220 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Hu, L.Y., Zhang, Z.M.: J. Opt. Soc. Am. B 29, 529 (2012)

    Article  ADS  Google Scholar 

  9. Zavattam, A., Viciani, S., Bellini, M.: Science 306, 660 (2004)

    Article  ADS  Google Scholar 

  10. Parigi, V., Zavatta, A., Kim, M., Bellini, M.: Science 317 (1890)

  11. Kim, M.S.: J. Phys. B 41, 133–001 (2008)

    Google Scholar 

  12. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, Ph.: Phys. Rev. Lett. 98, 030–502 (2007)

    Article  Google Scholar 

  13. Nha, H., Carmichael, H.J.: Phys. Rev. Lett. 93, 020–401 (2004)

    Google Scholar 

  14. Bartlett, S.D., Sanders, B.C.: Phys. Rev. A 65, 042–304 (2002)

    Google Scholar 

  15. Lee, S.Y., Nha, H.: Phys. Rev. A 82, 053–812 (2010)

    Google Scholar 

  16. Fan, H.-Y., Lu, H.-L., Yue, F.: Ann. Phys. 321, 480 (2006)

    Article  ADS  Google Scholar 

  17. Sivakumar, S.: Phys. Rev. A 83, 035–802 (2011)

    Article  Google Scholar 

  18. Fiurasek, J.: Phys. Rev. A 65, 053–818 (2002)

    Google Scholar 

  19. Kok, P., Lee, H., Dowling, J.P.: Phys. Rev. A 65, 052–104 (2002)

    Article  Google Scholar 

  20. Lee, S.Y., Nha, H.: Phys. Rev. A 85, 043–816 (2012)

    Google Scholar 

  21. Agarwal, G.S., Tara, K.: Phys. Rev. A 43, 492 (1991)

    Article  ADS  Google Scholar 

  22. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, Ph.: Science 312, 83 (2006)

    Article  ADS  Google Scholar 

  23. Kiesel, T., Vogel, W., Bellini, M., Zavatta, A.: Phys. Rev. A 83, 032–116 (2011)

    Google Scholar 

  24. Mandel, L.: Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  25. Short, R., Mandel, L.: Phys. Rev. Lett. 51, 384 (1983)

    Article  ADS  Google Scholar 

  26. Schleich, W., Wheeler, J.A.: Nature 326, 574 (1987)

    Article  ADS  Google Scholar 

  27. Schleich, W., Wheeler, J.A.: J. Opt. Soc. Am. B 41, 715 (1987)

    Google Scholar 

  28. Kenfack, A., Zyczkowski, K.: J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. Leonhardt, U., Paul, H. Phys. Rev. A 47, R2460 (1993)

    Article  ADS  Google Scholar 

  30. Vidiella-Barranco, A., Roversi, J.A.: Phys. Rev. A 50, 5233 (1996)

    Article  ADS  Google Scholar 

  31. Shapiro, Jeffrey H., Shepard, Scott R.: Phys. Rev. A 43, 3795 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  32. Noh, J.W., Fougeres, A., Mandel, L. Phys. Rev. A 45, 424 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ulf, L.: Measuring the quantum state of light, p 193. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  34. Verma, A., Pathak, A.: Phys. Lett. A, 374 (1009)

  35. Moya-Cessa, H., Knight, P.L.: Phys. Rev. A, 2479 (48)

  36. Milburn, G.J., Holmes, C.A.: Phys. Rev. Lett. 56, 2237 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  37. Glauber, R.J. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  38. Agarwal, G.S.: Quantum optics, p 39. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  39. Verma, A., Sharma, N.K., Pathak, A.: Phys. Lett. A 372, 5542 (2008)

    Article  ADS  Google Scholar 

  40. Pathak, A.B.: Phys. Lett. A 378, 117 (2014)

    Article  ADS  Google Scholar 

  41. Wang, X.G., Fu, H.C.: Int. J. Theor. Phys. 39, 1437 (2000)

    Article  MathSciNet  Google Scholar 

  42. Ozdemir, S.K., et al: Phys. Rev. A 64, 063–818 (2001)

    Article  Google Scholar 

  43. Yuan, H.-C., Xu, X.-X., Fan, H.-Y.: Chin. Phys. B 19, 10425 (2010)

    Google Scholar 

  44. Wu, C.H., Lee, D.S.: Phys. Lett. A 318, 303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  45. Loudon R.: Phys. Rev. Lett. 47, 815 (1981)

    Article  ADS  Google Scholar 

  46. Yamamoto, Y., Haus, H.A.: Rev. Mod. Phys. 58, 1001 (1986)

    Article  ADS  Google Scholar 

  47. Richardson, W.H., Machida, S., Yamamoto, Y.: Phys. Rev. Lett. 66, 2867 (1981)

    Article  ADS  Google Scholar 

  48. Kitagawa, M., Ueda, M.: Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  49. Furusawa, A., Sorensen, J., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  50. Ban, M.: J. Opt. B Quantum Semiclass. Opt. 2, 786 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  51. Ralph, T.C.: Phys. Rev. A 61, 010–303 (2000)

    Article  MathSciNet  Google Scholar 

  52. Walls, D.F.: Nature 306, 141 (1983)

    Article  ADS  Google Scholar 

  53. Lee, J., Kim, J., Nha, H.: J. Opt. Soc. Am. B 26, 1363 (2009)

    Article  ADS  Google Scholar 

  54. Ivan, J.S., Sabapathy, K.K., Simon, R.: Phys. Rev. A 84, 042–311 (2011)

    Article  Google Scholar 

  55. Hong-yi, F.: Ann. Phys. 321, 2116 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2015A268 and KJ2014A236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ren.

Appendices

Appendix A: Derivation of (18) and (19)

Using the generating function of Hermite polynomials

$$ H_{m} \left( x \right)=\left. {\frac{\partial^{m}}{\partial t^{m}}\exp \left( {2xt-t^{2}} \right)} \right|_{t=0} , $$
(A1)

we have

$$ H_{m} \left( {a^{\dag }} \right)=\left. {\frac{\partial^{m}}{\partial t^{m}}\exp \left( {2a^{\dag }t-t^{2}} \right)} \right|_{t=0} . $$
(A2)

Using the operator formula

$$ e^{Aa}f\left( {a^{\dag }} \right)e^{-Aa}=\sum\limits_{n=0}^{\infty} \,\frac{A^{n}}{n!}f^{\left( n \right)}\left( {a^{\dag }} \right)=f\left( {a^{\dag }+A} \right), $$
(A3)

and the recursion formula of Hermite polynomials in (6), we have

$$\begin{array}{@{}rcl@{}} H_{m} \left( a \right)a^{\dag } & =&\left. {\frac{\partial^{m}}{\partial t^{m}}\exp \left( {2at-t^{2}} \right)a^{\dag }} \right|_{t=0} \\ & =&\left. {\frac{\partial^{m}}{\partial t^{m}}\left( {a^{\dag }+2t} \right)\exp \left( {2at-t^{2}} \right)} \right|_{t=0} \\ & =&\left. {\frac{\partial^{m}}{\partial t^{m}}a^{\dag }\exp \left( {2at-t^{2}} \right)} \right|_{t=0} +\left. {\frac{\partial^{m}}{\partial t^{m}}2t\exp \left( {2at-t^{2}} \right)a^{\dag }} \right|_{t=0} \\ & =&a^{\dag }H_{m} \left( a \right)+2mH_{m-1} \left( a \right). \end{array} $$
(A4)

Using the method similar to those above, one finds

$$ aH_{m} \left( {a^{\dag }} \right)=H_{m} \left( {a^{\dag }} \right)a+2mH_{m-1} \left( {a^{\dag }} \right). $$
(A5)

With the help of (A4) and (A5), we obtain the average value of a a

$$\begin{array}{@{}rcl@{}} \left\langle {a^{\dag }a} \right\rangle & =&N_{m}^{^{-1}} \langle \alpha \left|\right.\left[ {a^{\dag }H_{m} \left( a \right)+2mH_{m-1} \left( a \right)} \right]\left[ {H_{m} \left( {a^{\dag }} \right)a+2mH_{m-1} \left( {a^{\dag }} \right)} \right]\left|\alpha \right\rangle \\ & =&N_{m}^{-1} \langle \alpha \left|\right.\left[ {\left| {\alpha^{2}} \right|H_{m} \left( a \right)H_{m} \left( {a^{\dag }} \right)+2m\alpha^{\ast }H_{m} \left( a \right)H_{m-1} \left( {a^{\dag }} \right)} \right. \\ &+&\left.2m\alpha H_{m-1} \left( a \right)H_{m} \left( {a^{\dag }} \right)+4m^{2}H_{m-1} \left( a \right)H_{m-1} \left( {a^{\dag }} \right) \right]\left| \alpha\right\rangle\\ &=&\left| {\alpha^{2}} \right|+4m^{2}\frac{N_{m-1} }{N_{m} }+2m\frac{1}{N_{m} }\left( {\alpha^{\ast }L_{m,m-1} +\alpha L_{m-1,m} } \right), \end{array} $$
(A6)

where the symbol L n, m denotes the average value of 〈α|H n, m |α〉 in(8).

Appendix B: Derivation of (22)

Using (A2) and the integration formula

$$ \int \frac{d^{2}z}{\pi }\exp \left( -\left| z \right|^{2} +\sigma z+\eta z^{\ast } \right)=\exp \left( {\sigma \eta } \right), $$
(B1)

we have

$$\begin{array}{@{}rcl@{}} W\left( {\gamma ,\gamma^{\ast }} \right) & =&\frac{2e^{2\left| \gamma \right|^{2} }}{\pi }N_{m}^{-1} \int \frac{d^{2}\lambda }{\pi }H_{m} \left( {-\lambda^{\ast }} \right)H_{m} \left( \lambda \right)\exp \\ &&\quad \left[-\left| \lambda \right|^{2} -\left| \alpha \right|^{2} +\left( {\alpha^{\ast }-2\gamma^{\ast }} \right)\lambda +\left( {2\gamma -\alpha } \right)\lambda^{\ast }\right]\\ &=&\frac{2e^{2\left| \gamma \right|^{2} }}{\pi }N_{m}^{-1} \frac{\partial^{2m}}{\partial t^{m}\partial t^{^{\prime }m}}\smallint \frac{d^{2}\lambda }{\pi }\exp\\ &&\times \left.\left[ {-\left| \lambda \right|^{2} -\left| \alpha \right|^{2} +\left( {\alpha^{\ast }-2\gamma^{\ast }+2t^{\prime }} \right)\lambda +\left( {2\gamma -\alpha -2t} \right)\lambda^{\ast }-t^{\prime 2}-t^{2}} \right] \right|_{t=t^{\prime }=0} \\ & =&\frac{2}{\pi }\exp \left[ {-2\left( {\left| \gamma \right|^{2} +\left| \alpha \right|^{2} -\gamma \alpha^{\ast }-\alpha \gamma^{\ast }} \right)} \right] \frac{\partial^{2m}}{\partial t^{m}\partial t^{^{\prime }m}}\exp\\ &&\times\left.\left[ {-t^{\prime 2}+\left( {4\gamma -2\alpha -4t} \right)t^{\prime }-2\left( {\alpha^{\ast }-2\gamma^{\ast }} \right)t-t^{2}} \right] \right|_{t=t^{\prime }=0}\\ & =&\frac{2}{\pi }N_{m}^{-1} \exp \left[ {-2\left( {\left| \gamma \right|^{2} +\left| \alpha \right|^{2} -\gamma \alpha^{\ast }-\alpha \gamma^{\ast }} \right)} \right] \frac{\partial^{m}}{\partial t^{m}}H_{m} \left( {2\gamma -\alpha -2t} \right)\exp\\ &&\times\left.\left[ {-2t\left( {\alpha^{\ast }-2\gamma^{\ast }} \right)-t^{2}} \right] \right|_{t=0} . \end{array} $$
(B2)

Appendix C: Derivation of (25)

Noting the wave function of the coherent state

$$ \left\langle q \right.\left| \beta\right\rangle =\pi^{-1/4}\exp \left( {-\frac{1}{2}q^{2}+\sqrt 2 q\beta -\frac{1}{2}\beta^{2}-\frac{1}{2}\left| \beta \right|^{2} } \right), $$
(C1)

and usint the complteness of the coherent state, we first calculate the wave function of the HPPACS as

$$\begin{array}{@{}rcl@{}} W_{H} &=&N_{m}^{-1/2} \pi^{-1/4}\exp \left( {-\frac{1}{2}\left| \alpha \right|^{2} -\frac{1}{2}q^{2}} \right)\int \frac{d^{2}\beta }{\pi }H_{m} \left( {\beta^{\ast }} \right)\exp \left( {-\left| \beta \right|^{2} +\sqrt 2 q\beta +\alpha \beta^{\ast }-\frac{\beta^{2}}{2}} \right) \\ & =&N_{m}^{-1/2} \pi^{-1/4}\exp \left( {-\frac{1}{2}\left| \alpha \right|^{2} -\frac{1}{2}q^{2}} \right) \frac{\partial^{m}}{\partial t^{m}}\exp \left( {-t^{2}} \right)\int \frac{d^{2}\beta }{\pi }\exp\\ &&\left.\left[ {-\left| \beta \right|^{2} -\frac{\beta^{2}}{2}+\left( {2t+\alpha } \right)\beta^{\ast }+\sqrt 2 q\beta } \right] \right|_{t=0} \\ & =&N_{m}^{-1/2} \pi^{-1/4}\exp \left( {-\frac{1}{2}\left| \alpha \right|^{2} -\frac{1}{2}\alpha^{2}-\frac{q^{2}}{2}+\sqrt 2 q\alpha } \right)\left. {\frac{\partial^{m}}{\partial t^{m}}\exp \left[ {-3t^{2}+2\left( {\sqrt 2 q-\alpha } \right)t} \right]} \right|_{t=0} \\ & =&-N_{m}^{-1/2} \pi^{-1/4}\sqrt{3}^{m} \exp \left( {-\frac{1}{2}\left| \alpha \right|^{2} -\frac{1}{2}\alpha^{2}-\frac{q^{2}}{2}+\sqrt 2 q\alpha} \right)H_{m} \left( {\frac{\alpha }{\sqrt{3} }-\sqrt {\frac{2}{3}} q} \right), \end{array} $$
(C2)

where we have used

$$\begin{array}{@{}rcl@{}} \left. {\frac{\partial^{n}}{\partial t^{n}}\exp \left( {At+Bt^{2}} \right)} \right|_{t=0} =\left( {i\sqrt{B} } \right)^{n} H_{n} \left( {\frac{A}{2i\sqrt{B} }} \right), \end{array} $$
(C3)

and the integral formula

$$\begin{array}{@{}rcl@{}} &&\smallint \frac{d^{2}z}{\pi }\exp \left( {\zeta \left| z \right|^{2} +\xi z+\eta z^{\ast}+fz^{2}+gz^{\ast 2}} \right)\\ &&=\frac{1}{\sqrt{\zeta^{2}-4fg} }\exp \left[ {\frac{-\zeta \xi \eta +\xi ^{2}g+\eta^{2}f}{\zeta^{2}-4fg}} \right], \end{array} $$
(C4)

whose convergent condition is \(Re\left ({\xi +f+g} \right )<0,Re\left (\frac {\zeta ^{2}-4fg} {\xi +f+g} \right )<0,\)or \(Re\left (\xi -f-g \right )<0, \quad Re\left (\frac {\zeta ^{2}-4fg} {\xi -f-g} \right )<0.\)

Substituting Eq. (C2) into (23) , one have

$$\begin{array}{@{}rcl@{}} W_{q} =N_{m}^{-1} \pi^{-1/2}3^{m}\exp \left( {-\left| \alpha \right|^{2} -\alpha^{2}-q^{2}+2\sqrt 2 q\alpha } \right)\left| {H_{m} \left( {\frac{\alpha }{\sqrt 3 }-\sqrt{\frac{2}{3}} q} \right)} \right|^{2} . \end{array} $$
(C5)

Appendix D: The Average Value of Some Operators

Using the similar way in appendix A, we have

$$\begin{array}{@{}rcl@{}} H_{m} \left( a \right)a^{\dag 2}=a^{\dag 2}H_{m} \left( a \right)+4m\left( {m-1} \right)H_{m-2} \left( a \right)+4ma^{\dag }H_{m-1} \left( a \right) \end{array} $$
(D.1)

and the average value of a †2 is

$$ \left\langle {a^{\dag 2}} \right\rangle =\alpha^{\ast 2}+4m\alpha^{\ast }\frac{L_{m-1,m} }{N_{m} }+4m\left( {m-1} \right)\frac{L_{m-2,m} }{N_{m} }, $$
(D.2)
$$ \left\langle {a^{2}} \right\rangle =\alpha^{2}+4m\alpha \frac{L_{m,m-1}}{N_{m} }+4m\left( {m-1} \right)\frac{L_{m,m-2} }{N_{m} }. $$
(D.3)

Similarly, we calculate

$$ \left\langle a \right\rangle =\alpha +2m\frac{L_{m,m-1} }{N_{m} }, $$
(D.4)

and

$$ \left\langle {a^{\dag }} \right\rangle =\alpha^{\ast }+2m\frac{L_{m-1,m} }{N_{m} }. $$
(D.5)

Appendix E: Derivation of (33)

To get the explicit form of (33), we first calculate the following overlap \(\langle \alpha |H_{m} \left (a \right )S\left (\lambda \right )\left | \alpha \right \rangle \) by using (32) as

$$\begin{array}{@{}rcl@{}} && \langle \alpha \left|\right.H_{m} \left( a \right)S\left( \lambda \right)\left| \alpha\right\rangle \\ && =sech^{1/2} \lambda \exp \left( {\frac{\alpha^{2}}{2}\tanh \lambda } \right) \frac{\partial^{m}}{\partial t^{m}}\exp \left( {-t^{2}} \right)\langle \alpha \left|\right.\exp \left( {2at} \right)\exp \\ &&\qquad \times\left.\left( {-\frac{a^{\dag 2}}{2}\tanh \lambda } \right)\exp \left[ {\left( {sech\lambda -1} \right)a^{\dag }\alpha } \right]\left| \alpha\right\rangle \right|_{t=0} \\ && =sech^{1/2} \lambda \exp \left( {\frac{\alpha^{2}}{2}\tanh \lambda -\frac{\alpha^{\ast 2}}{2}\tanh \lambda } \right) \\ &&\left. {\frac{\partial^{m}}{\partial t^{m}}\exp \left[ {-t^{2}\left( {1+2\tanh \lambda } \right)-2t\alpha^{\ast }\tanh \lambda +2t\left( {sech\lambda -1} \right)\alpha +\left( {sech\lambda -1} \right)\left| \alpha \right|^{2} +2\alpha t} \right]} \right|_{t=0} \\ &&=sech^{1/2} \lambda \exp \left( {\frac{\alpha^{2}}{2}\tanh \lambda -\frac{\alpha^{\ast 2}}{2}\tanh \lambda +\left( {sech\lambda -1} \right)\left| \alpha \right|^{2} } \right) \frac{\partial^{m}}{\partial t^{m}}\exp\\ &&\qquad\times\left.\left[ {-t^{2}\left( {1+2\tanh \lambda } \right)+2t\left( {\alpha sech\lambda -\alpha^{\ast }\tanh \lambda } \right)} \right] \right|_{t=0} \\ &&=sech^{1/2} \lambda {F_{2}^{n}} \exp \left( {F_{1}} \right)H_{m} \left( {F_{3} } \right), \end{array} $$
(E1)

where

$$F_{1} =\left( {sech\lambda -1} \right)\left| \alpha \right|^{2} +\frac{1}{2}\left( {\alpha^{2}-\alpha^{\ast 2}} \right)\tanh \lambda , $$
$$F_{2} =-\sqrt {1+2\tanh \lambda } , $$
$$F_{3} =\frac{2\left( {\alpha sech\lambda -\alpha^{\ast }\tanh \lambda } \right)}{-2\sqrt {1+2\tanh \lambda } }. $$

and we also used the following operator identical

$$ e^{\xi a}e^{\eta a^{\dag 2}}=e^{\eta a^{\dag 2}}e^{2\xi \eta a^{\dag }}e^{\xi a}e^{\xi^{2}\eta }, $$

and

$$ e^{A}e^{B}=e^{B}e^{A}e^{[A,B]} $$

in the case [A,[A, B]]=[B,[A, B]]=0.

Substituting (E1) into (31), we have the result in (33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Ma, Jg., Du, Jm. et al. Hermite Polynomial’s Photon Added Coherent State and its Non-classical Properties. Int J Theor Phys 55, 2071–2088 (2016). https://doi.org/10.1007/s10773-015-2847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2847-0

Keywords

Navigation