Skip to main content
Log in

A Unique Reversible Gate in Quantum-dot Cellular Automata for Implementation of Four Flip-flops Without Garbage Outputs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, a unique gate is presented for the design of reversible flip-flops in quantum-dot cellular automata technology. The proposed gate is implemented with multiplexer, three-input Majority gate and XOR gate. The proposed gate has four input lines and four output lines. This gate is designed without garbage outputs. In other words, each output determines the function of each of flip-flops. The proposed structure is evaluated by the QCADesigner. The result of the simulation represents that the operations of the proposed structure is as expected and all functions are correct. Also, the evaluation results show that the proposed structure has significant improvement in area, cell numbers and delay compared to the previous structures. QCAPro tool is used to estimate energy consumption of the proposed structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Karkaj, E.T., Heikalabad, S.R.: A testable parity conservative gate in quantum-dot cellular automata. Superlattice. Microst. https://doi.org/10.1016/j.spmi.2016.08.054 (2016)

    Article  ADS  Google Scholar 

  2. Compano, R., Molenkamp, L., Paul, D.J.: Technology Roadmap for Nanoelectronics, European Commission IST Prpgramme, Future and Emerging Tecnologies (2000)

  3. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)

    Article  ADS  Google Scholar 

  4. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik - Int. J. Light Electron. Opt. 130. https://doi.org/10.1016/j.ijleo.2016.11.087 (2017)

    Article  Google Scholar 

  5. IEEE: International symposium on circuit and systems, 2004. QCA: a promising research area for CAS society

  6. Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron. J. 43(12), 929–940 (2012)

    Article  Google Scholar 

  7. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automara. Appl. Phys. 75, 1818–1824 (1994)

    Article  Google Scholar 

  8. Shamsabadi, A.S., Ghahfarokhi, B.S., Zamanifar, K., Movahedinia, N.: Applying inherent capabilities of quantum-dot cellular automata to design: D flip-flop case study. J. Syst. Archit. 55(3), 180–187 (2008)

    Article  Google Scholar 

  9. Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)

    Article  Google Scholar 

  10. Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56, 2990–3004 (2017)

    Article  Google Scholar 

  11. Jayashree, R., Kiran Kumar, M., Selvakuma, J.: Design and analysis of flip flops using reversible logic. IJAIST 23(23), 210–217 (2014)

    Google Scholar 

  12. Asfestani, M.N., Heikalabad, S.R.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys. B Condens. Matter 512, 91–99 (2017). https://doi.org/10.1016/j.physb.2017.02.028

    Article  ADS  Google Scholar 

  13. Debarka, M., Dutta, P.: A Study on energy optimized 4 to 2 electron two dimensional quantum dot cellular automata logical reversible flip-flops. Microelectron. J. 46(6), 519–530 (2015)

    Article  Google Scholar 

  14. Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter 521, 162–167 (2017). https://doi.org/10.1016/j.physb.2017.06.059

    Article  ADS  Google Scholar 

  15. Barughi, Y.Z., Heikalabad, S.R.: A Three-Layer Full Adder/Subtractor Structure in Quantum-Dot Cellular Automata. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-017-3453-0 (2017)

    Article  ADS  Google Scholar 

  16. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCAD Esigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  17. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPRo-an error power estimation tool for QCA circuit design. In: Proceedings of the IEEE International Symposium Circuits System, pp. 2377–2380 (2011)

  18. Ali, B., Hossin, M., Ullah, E.: Design of reversible sequential circuit using reversible logic synthesis. International Journal of VLSI design and Communication Systems (VLSICS) 4, 2 (2011)

    Google Scholar 

  19. Chabi, A.M., et al.: Towards ultra-efficient QCA reversible circuits. Microprocess. Microsyst. 49, 127–138 (2017)

    Article  Google Scholar 

  20. Tangmettajittakul, O., Thainoi, S., Changmoang, P., Kanjanachuchai, S., Rattanathammaphan, S., Panyakeow, S.: Extended optical properties beyond band-edge of GaAs by InAs quantum dots and quantum dot molecules. Microelectron. Eng. 87(5–8), 1304–1307 (2010). https://doi.org/10.1016/j.mee.2009.12.063

    Article  Google Scholar 

  21. Yu, W., Zhang, B., Liu, C., Zhao, Y., Wu, W.R., Xue, Z.Y., Chen, M., Buca, D., Hartmann, J. -M., Wang, X., Zhao, Q.T., Mantl, S.: Impact of Si cap, strain and temperature on the hole mobility of (s)si/ssige/(s)SOI quantum-well p-MOSFETs. Microelectron. Eng. 113, 5–9 (2014). https://doi.org/10.1016/j.mee.2013.06.015

    Article  Google Scholar 

  22. Debnath, B., Das, J.C.: Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks. Nano Commun. Networks 15, 41–58 (2018)

    Article  Google Scholar 

  23. Bose, R., Johnson, H.T.: Coulomb interaction energy in optical and quantum computing applications of self-assembled quantum dots. Microelectron. Eng. 75(1), 43–53 (2004). https://doi.org/10.1016/j.mee.2003.11.008

    Article  Google Scholar 

  24. Smith, C.: Realization of quantum-dot cellular automata using semiconductor quantum dots. Superlattices Microstruct. 34, 195–203 (2003)

    Article  ADS  Google Scholar 

  25. Das, J.C., De, D.: Circuit switching with quantum-dot cellular automata. Nano Commun. Networks 14, 16–28 (2017)

    Article  Google Scholar 

  26. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsystem Technologies (2017)

  27. Khan, A.: Static hazard elimination for a logical circuit using quantum dot cellular automata. Microsyst. Technol. 23(9), 4169–4177 (2017)

    Article  Google Scholar 

  28. Kassa, S., Nagaria, R.K.: Energy efficient neoteric design of a 3-input majority gate with its implementation and physical proof in quantum dot cellular automata. Nano Commun. Networks 15, 28–40 (2018)

    Article  Google Scholar 

  29. Ghosh, M.: Design of an arithmetic circuit using non-reversible adders in 2 dot 1 electron QCA. Microsystem Technologies (2017)

  30. Datta, K.: Comprehensive study on the performance comparison of logically reversible and irreversible parity generator and checker designs using two-dimensional two-dot one-electron QCA. Microsystem Technologies (2017)

  31. Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Commun. Networks 16, 1–9 (2018)

    Article  Google Scholar 

  32. Sadoghifar, A., Heikalabad, S.R.: A content-addressable memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys. B Condens. Matter 537, 202–206 (2018). https://doi.org/10.1016/j.physb.2018.02.024

    Article  ADS  Google Scholar 

  33. Hosseinzadeh, H., Heikalabad, S.R.: A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018). https://doi.org/10.1016/j.mee.2018.01.019

    Article  Google Scholar 

  34. Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without crosswiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. https://doi.org/10.1007/s11227-017-2206-4 (2017)

    Article  Google Scholar 

  35. Heikalabad, S.R., Gadim, M.R.: Design of improved arithmetic logic unit in Quantum-Dot cellular automata. International Journal of Theoretical Physics (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Rasouli Heikalabad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamrani, S., Heikalabad, S.R. A Unique Reversible Gate in Quantum-dot Cellular Automata for Implementation of Four Flip-flops Without Garbage Outputs. Int J Theor Phys 57, 3340–3358 (2018). https://doi.org/10.1007/s10773-018-3847-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3847-7

Keywords

Navigation