Skip to main content
Log in

The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scully, M.O.: Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  2. Quan, H.T., Yang, S., Sun, C.P.: Phys. Rev. E 78(02), 2008 (1116)

    Google Scholar 

  3. Quan, H.T.: Phys. Rev. E 79, 041129 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Wang, J.H., He, J.Z., He, X.: Phys. Rev. E 84, 041127 (2011)

    Article  ADS  Google Scholar 

  5. Wang, J.H., He, J.Z., Wu, Z.Q.: Phys. Rev. E 85, 031145 (2012)

    Article  ADS  Google Scholar 

  6. Wang, J.H., Wu, Z.Q., He, J.Z.: Phys. Rev. E 85, 041148 (2012)

    Article  ADS  Google Scholar 

  7. Wang, J.H., He, J.Z.: J. Appl. Phys. 111, 043505 (2012)

    Article  ADS  Google Scholar 

  8. Li, S., Wang, H., Sun, Y.D., Yi, X.X.: J. Phys. A 40, 8655 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fialko, O., Hallwood, D.W.: Phys. Rev. Lett. 108, 085303 (2012)

    Article  ADS  Google Scholar 

  10. Scovil, H.E.D., Schulz-dubois, E.O.: Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  11. Kieu, T.D.: Phys. Rev. Lett. 93, 140403 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  13. He, J.Z., Chen, J.C., Hua, B.: Phys. Rev. E 65, 036145 (2002)

    Article  ADS  Google Scholar 

  14. Wu, F., Chen, L.G., Sun, F., Wu, C., Li, Q.: Phys. Rev. E 73, 016103 (2006)

    Article  ADS  Google Scholar 

  15. Feldmann, T., Kosloff, R.: Phys. Rev. E 61, 4774 (2000)

    Article  ADS  Google Scholar 

  16. Feldmann, T., Kosloff, R.: Phys. Rev. E 68, 016101 (2003)

    Article  ADS  Google Scholar 

  17. Feldmann, T., Kosloff, R.: Phys. Rev. E 70, 046110 (2004)

    Article  ADS  Google Scholar 

  18. Wu, F., Chen, L., Wu, S., Sun, F.R., Wu, C.: J. Chem. Phys. 124, 214702 (2006)

    Article  ADS  Google Scholar 

  19. Wang, J.H., He, J.Z., Xin, Y.: Phys. Scr. 75, 227 (2007)

    Article  ADS  Google Scholar 

  20. Wu, F., Chen, L.G., Wu, S., Sun, F.R.: J. Phys. D: Appl. Phys. 39, 4731 (2006)

    Article  ADS  Google Scholar 

  21. He, J.Z., Xin, Y., He, X.: Appl. Energy 84, 176 (2007)

    Article  Google Scholar 

  22. Feldmann, T., Kosloff, R.: Phys. Rev. E 61, 4774 (2000)

    Article  ADS  Google Scholar 

  23. Wu, F., He, J., Ma, Y., Wang, J.: Phys. Rev. E 90, 062134 (2014)

    Article  ADS  Google Scholar 

  24. Chen, J., Lin, B., Hua, B.: J. Phys. D: Appl. Phys. 35, 2051 (2002)

    Article  ADS  Google Scholar 

  25. Geva, E., Kosloff, R.: J. Chem. Phys. 97, 4398 (1992)

    Article  ADS  Google Scholar 

  26. Lin, B.H., Chen, J.C.: Phys. Rev. E 67, 046105 (2003)

    Article  ADS  Google Scholar 

  27. Lin, B.H., Chen, J.C.: Phys. Scr. 71, 12 (2005)

    Article  ADS  Google Scholar 

  28. Wang, J.H., He, J.Z., Mao, Z.Y.: Sci. Chin. Series G: Phys Mech. Astro. 50, 163 (2007)

    Article  ADS  Google Scholar 

  29. He, J., He, X., Tang, W.: Sci. Chin. Series G: Phys. Mech. Astro. 52, 1317 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. Rezek, Y., Kosloff, R.: New J. Phys. 8, 1 (2006)

    Article  MathSciNet  Google Scholar 

  31. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev.E 76, 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. Scully, M.O.: Phys. Rev. Lett. 87, 220601 (2001)

    Article  ADS  Google Scholar 

  33. Bender, C., Brody, D.C., Meister, B.K.: J. Phys. A: Math. Gen. 33, 4427 (2000)

    Article  ADS  Google Scholar 

  34. Quan, H.T., Zhang, P., Sun, C.P.: Phys. Rev. E 72, 056110 (2005)

    Article  ADS  Google Scholar 

  35. Scully, M.O.: Phys. Rev. Lett. 88, 050602 (2002)

    Article  ADS  Google Scholar 

  36. Wang, J., Ma, Y., He, J.: EPL 111, 20006 (2015)

    Article  ADS  Google Scholar 

  37. Quan, H., Zhang, P., Sun, C.P.: Phys. Rev.E 73, 036122 (2006)

    Article  ADS  Google Scholar 

  38. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  39. Zhang, T., Liu, W., Chen, P.X., Li, C.Z.: Phys. Rev.A 75, 062102 (2007)

    Article  ADS  Google Scholar 

  40. He, J.Z., He, X., Zhang, J.: Chin. Phys. B 21, 050303 (2012)

    Article  ADS  Google Scholar 

  41. Altintas-Ferdi, H., Ali, Ü.C., Müstecaplıog~lu, Ö.E.: Phys. Rev. E 90, 032102 (2011)

    Article  Google Scholar 

  42. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Rev. Mod. Phys. 79, 555 (2007)

    Article  ADS  Google Scholar 

  43. Marvian, I., Spekkens, R.W.: New J.Phys. 15, 033001 (2013)

    Article  ADS  Google Scholar 

  44. Marvian, I., Spekkens, R.W.: Phys. Rev. A 90, 062110 (2014)

    Article  ADS  Google Scholar 

  45. Lloyd, S.J.: Phys. Conf. Ser. 302, 012037 (2011)

    Article  Google Scholar 

  46. Li, C., Lambert, N., Chen, Y.N., Chen, G.Y., Nori, F., Wolf, E.: Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  47. Lambert, N., Chen, Y.N., Chen, Y.C., Li, C.M., Chen, G.Y., Nori, F.: Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  48. Narasimhachar, V., Gour, G.: Nat. Commum. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  49. Åberg, J.: Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  50. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Phys. Rev. Lett. 115, 210403 (2015)

    Article  Google Scholar 

  51. Baumgratz, T., Cramer, M., Plenio, M.B.: Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11374096), Hunan Provincial Innovation Foundation for Postgraduate (CX2017B177) and the Scientific Research Project of Hunan Provincial Education Department, China(Grant No. 16C0949).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mao-Fa Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, HP., Fang, MF., Yu, M. et al. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model. Int J Theor Phys 57, 1872–1880 (2018). https://doi.org/10.1007/s10773-018-3712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3712-8

Keywords

Navigation