Skip to main content
Log in

Emergence of cosmic space and minimal length in quantum gravity: a large class of spacetimes, equations of state, and minimal length approaches

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

We argue that the modified Landau–Raychaudhuri equations should first be analysed in a large class of spacetimes and in dependence on various equations of states, before endorsing any conclusion about (non)singular Big Bang. From the corrected entropy-area law in a large class of metrics, the generalized uncertainty principle (GUP) and the modified dispersion relation (MDR) approaches, and various equations of states, the modified Friedmann equations are derived. They are applied on Landau–Raychaudhuri equations in emergence of cosmic space framework from fixed point method. We show that any conclusion about (non)singular Big Bang is simply badly model-dependent, especially when utilizing GUP and MDR approaches, which can not replace a good theory for quantum gravity. We conclude that the various quantum gravity approaches, metrics and equations of state lead to different modifications in Friedmann and Landau–Raychaudhuri equations and thus to different (non)singular solutions for Big Bang theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A V Frolov, K R Kristjansson and L Thorlacius et al. Phys. Rev. D 72 021501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. P K Townsend Black Holes: Lecture Notes, arXiv:gr-qc/9707012

  3. T Padmanabhan Phys. Rep. 406 49 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  4. J D Bekenstein Lett. Nuovo. Cim. 4 737 (1972)

    Article  ADS  Google Scholar 

  5. J D Bekenstein Phys. Rev. D 7 2333 (1973);

    Article  ADS  MathSciNet  Google Scholar 

  6. J D Bekenstein Phys. Rev. D 9 3292 (1974)

    Article  ADS  Google Scholar 

  7. S W Hawking Commun. Math. Phys. 43 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  8. A N Tawfik and A M Diab Rep. Prog. Phys. 78 126001 (2015)

    Article  ADS  Google Scholar 

  9. A Tawfik and A Diab Int. J. Mod. Phys. D 23 1430025 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. A Tawfik JCAP 1307 040 (2013)

    Article  ADS  Google Scholar 

  11. A F Ali and A Tawfik Adv. High Energy Phys. 2013 126528 (2013)

    MathSciNet  Google Scholar 

  12. A F Ali and A Tawfik Int. J. Mod. Phys. D 22 1350020 (2013)

    Article  ADS  Google Scholar 

  13. A Tawfik, H Magdy and A Farag Ali Gen. Rel. Grav. 45 1227 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  14. A Tawfik and A Diab Electron. J. Theor. Phys. 12 9 (2015)

    Google Scholar 

  15. A Tawfik, H Magdy and A F Ali Phys. Part. Nucl. Lett. 13 59 (2016)

    Article  Google Scholar 

  16. I Elmashad, A F Ali, L I Abou-Salem, J-U Nabi and A Tawfik SOP Trans. Theor. Phys. 1 1 (2014)

    Google Scholar 

  17. S Coleman and S L Glashow Phys. Rev. D 59 116008 (1999)

    Article  ADS  Google Scholar 

  18. D Colladay and V A Kostelecky Phys. Rev. D 58 116002 (1998)

    Article  ADS  Google Scholar 

  19. F W Stecker and S L Glashow Astropart. Phys. 16 97 (2001)

    Article  ADS  Google Scholar 

  20. S R Coleman and S L Glashow Phys. Lett. B 405 249 (1997)

    Article  ADS  Google Scholar 

  21. G Amelino-Camelia, J Ellis, N F Mavromatos, D V Nanopoulos and S Sarkar Nature 393 763 (1998)

    Article  ADS  Google Scholar 

  22. G Amelino-Camelia Nature 410 1065 (2001)

    Article  ADS  Google Scholar 

  23. G Amelino-Camelia and T Piran Phys. Rev. D 64 036005 (2001)

    Article  ADS  Google Scholar 

  24. G Amelino-Camelia, M Arzano and A Procaccini Phys. Rev. D 70 107501 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  25. G Amelino-Camelia, M Arzano and A Procaccini A Int. J. Mod. Phys. D 13 2337 (2004)

    Article  ADS  Google Scholar 

  26. G Amelino-Camelia, M Arzano, Y Ling and G Mandanica Class. Quantum Gravity 23 2585 (2006)

    Article  ADS  Google Scholar 

  27. K Nozari and A S Sefiedgar Phys. Lett. B 635 156 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. R Aloisio, P Blasi, P L Ghia and A F Grillo Phys. Rev. D 62 053010 (2000)

    Article  ADS  Google Scholar 

  29. T Jacobson, S Liberati and D Mattingly Phys. Rev. D 66 081302 (2002)

    Article  ADS  Google Scholar 

  30. K Nozari and A S Sefidgar Chaos Solitons Fractals 38 339 (2008)

    Article  ADS  Google Scholar 

  31. A F Ali Phys. Lett. B 732 335 (2014)

    Article  ADS  Google Scholar 

  32. A Tawfik and A Diab Int. J. Mod. Phys. A 30 1550059 (2015)

    Article  MathSciNet  Google Scholar 

  33. A Tawfik and E Abou El Dahab Int. J. Mod. Phys. A 30 1550030 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. A Farag Ali, S Das and E C Vagenas Phys. Rev. D 84 044013 (2011)

    Article  ADS  Google Scholar 

  35. W Chemissany, S Das, A F Ali and E C Vagenas JCAP 1112 017 (2011)

    Article  ADS  Google Scholar 

  36. S Das and E C Vagenas Phys. Rev. Lett. 101 221301 (2008)

    Article  ADS  Google Scholar 

  37. S Das and E C Vagenas Can. J. Phys. 87 233 (2009).

    Article  ADS  Google Scholar 

  38. K Nozari and B Fazlpour Acta Phys. Polon. B 39 1363 (2008)

    ADS  MathSciNet  Google Scholar 

  39. R G Cai, L M Cao and Y P Hu JHEP 08 090 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  40. T Zhu, J-R Ren and M-F Li Phys. Lett. B 674 204 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. S M Carroll Spacetime and Geometry: An Introduction to General Relativity (USA: University of Chicago) (2004)

  42. H Reissner Ann. Phys. 50 106–120 (1916)

    Article  Google Scholar 

  43. G Nordström On the Energy of the Gravitational Field in Einsteins Theory Proc. Kon. Ned. Akad. Wet. 20 p 1238 (1918)

  44. A Awad Phys. Rev. D 87 103001 (2013)

    Article  ADS  Google Scholar 

  45. A Tawfik and E Abou El Dahab Friedmann–Lemaitre–Robertson–Walker Cosmology with Horava–Lifshitz Gravity: Impacts of Various Equations of State. AHEP (Submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Tawfik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A., Diab, A. Emergence of cosmic space and minimal length in quantum gravity: a large class of spacetimes, equations of state, and minimal length approaches. Indian J Phys 90, 1095–1103 (2016). https://doi.org/10.1007/s12648-016-0855-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0855-4

Keywords

PACS Nos.

Navigation