Skip to main content
Log in

Hawking Radiation as a Possible Probe for the Interior Structure of Regular Black Holes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The notion of black hole singularity and the proof of the singularity theorem were considered great successes in classical general relativity whereas they meanwhile brought with deep puzzles. Conceptual challenges were set up by the intractability of the singularity. The existence of black hole horizons which cover up the black hole interior including the singularity from outside observers, builds an information curtain, further hindering physicists from understanding the nature of the singularity and the interior structure of black holes. The regular black hole is a concept produced out of multiple attempts of establishing a tractable and understandable interior structure for black holes as well as avoiding the singularity behind the black hole horizon. The practicality of the new constructions of black holes would be considered more reliable if there can be found some connection between the interior of regular black holes and some far-reaching signals released from the black hole. After studying the Hawking radiation by fermion tunnelling from one type of regular black hole, structure dependent results were obtained. The result being structure dependent hints the prospects of employing the Hawking radiation as a method to probe into the structure of black holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Hawking, S.W.: Proc. Roy. Soc. Lond. A 300, 1870 (1967)

    Article  Google Scholar 

  3. Hawking, S.W., Penrose, R.: Proc. Roy. Soc. Lond. A 314, 529–548 (1970)

    Article  ADS  Google Scholar 

  4. Hawking, S.W., Ellis, G.F: The Large Scale Structure of Spacetime. Cambridge University Press (1973)

  5. Frolov, V.P., Vilkovisky, G.A.: Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106(4), 307–313 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. Frolov, V.P., Markov, M.A., Mukhanov, V.F.: Black holes as possible sources of closed and semiclosed worlds. Phys. Rev. D 41(2), 383 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  7. Kawai, H., Yokokura, Y.: Interior of black holes and information recovery. Phys. Rev. D 93, 044011 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bardeen, J.M.: Non-singular general relativistic gravitational collapse. In: Proceedings of GR5 (1968)

  9. Mars, M., Martin-Prats, M. M., Senovilla, J. M. M.: Class. Quant. Grav. 13, L51 (1996)

    Article  ADS  Google Scholar 

  10. Cabo, A., Ayn-Beato, E.: About black holes without trapping interior. Int. J. Mod. Phys. A14, 2013–2022 (1999)

    Article  ADS  MATH  Google Scholar 

  11. Borde, A.: Phys. Rev. D 50, 3392 (1994)

    Article  ADS  Google Scholar 

  12. Borde, A.: Phys. Rev. D 55, 7615 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. Barrabés, C., Frolov, V.P.: Phys. Rev. D 53, 3215 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ayn-Beato, E., Garcia, A.: Phys. Rev. Lett. 23, 5056 (1998)

    Article  ADS  Google Scholar 

  15. Hayward, S. A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    Article  ADS  Google Scholar 

  16. Lin, K., Li, J., Yang, S., Zu, X.: A new regular black hole. Int. J. Theor. Phys. 52, 1013–1019 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dymnikova, I.: Vacuum nonsingular black hole. Gen. Rel. Grav. 24, 235–242 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dymnikova, I. G.: The algebraic structure of a cosmological term in spherically symmetric solutions. Phys. Lett. B 472, 33–38 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dymnikova, I.: Cosmological term as a source of mass. Class Quant. Grav. 19, 725–740 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dymnikova, I., Soltysek, B.: Spherically symmetric space-time with two cosmological constants. Gen. Rel. Grav. 30, 1775–1793 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dymnikova, I., Korpusik, M.: Regular black hole remnants in de Sitter space. Phys. Lett. B685, 12–18 (2010)

    Article  ADS  Google Scholar 

  22. Li, J., Lin, K., Yang, N.: Nonlinear electromagnetic quasinormal modes and Hawking radiation of a regular black hole with magnetic charge. Eur. Phys. J. C 75(3), 131 (2015)

    Article  ADS  Google Scholar 

  23. Lin, K., Li, J., Yang, S.: Quasinormal modes of Hayward regular black hole. Int. J. Theor. Phys. 52, 3771–3778 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Hong, M., Lin, K.: Dirac quasinormal modes in spherically symmetric regular black holes. Phys. Rev. D 88, 064001 (2013)

    Article  ADS  Google Scholar 

  25. Flachi, A., Lemos, J. P. S.: Quasinormal modes of regular black holes. Phys. Rev. D 87(2), 024034 (2013)

    Article  ADS  Google Scholar 

  26. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  27. Kraus, P., Wilczek, F.: Nucl. Phys. B 433, 403 (1995). [grqc/9408003]

    Article  ADS  Google Scholar 

  28. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85(5042), 2000

  29. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 24007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  30. Kerner, R., Mann, R.B.: Class. Quantum. Grav. 25, 095014 (2008)

    Article  ADS  Google Scholar 

  31. Kerner, R., Mann, R.B.: Phys. Lett. B 665(277), 2008

  32. Lin, K., Yang, S.Z.: Phys. Rev. D 79, 064035 (2009)

    Article  ADS  Google Scholar 

  33. Lin, K., Yang, S.Z.: Phys. Lett. B 674(127), 2009

  34. Chen, G.R., Huang, Y.C.: Fermions tunneling from a general static Riemann black hole. Gen. Rel. Grav. 47(5), 57 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Chen, G.R., Huang, Y.C.: Corrected Hawking radiation of dirac particles from a general static Riemann black hole. Adv. High Energy Phys., 982146 (2013)

  36. Nicolini, P., Smailagic, A., Spallucci, E.: Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547–551 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Nicolini, P.: Int. J. Mod. Phys. A 24, 1229 (2009)

    Article  ADS  Google Scholar 

  38. Larranaga, A., Cardenas-Avendano, A., Torres, D.A.: On a general class of regular rotating black holes based on a smeared mass distribution. Phys. Lett. B 743, 492–502 (2015)

    Article  ADS  MATH  Google Scholar 

  39. Nicolini, P.: The final stage of gravitationally collapsed thick matter layers. Adv. High Energy Phys. 812084 (2013)

  40. Zhang, B., Cai, Q., Zhan, M., You, L.: Noncommutative information is revealed from Hawking radiation as tunneling. Europhys. Lett. 94, 20002 (2011)

    Article  ADS  Google Scholar 

  41. Smailagic, A., Spallucci, E.: Kerrr black hole: The Lord of the string. Phys. Lett. B 688, 82–87 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Prof. Anzhong Wang and Drs. V.H. Satheeshkumar, Xinwen Wang, Tao Zhu, Miao Tian and Chikun Ding for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbin Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Cleaver, G. Hawking Radiation as a Possible Probe for the Interior Structure of Regular Black Holes. Int J Theor Phys 56, 741–750 (2017). https://doi.org/10.1007/s10773-016-3215-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3215-4

Keywords

Navigation