Skip to main content
Log in

Revisiting Quantum Authentication Scheme Based on Entanglement Swapping

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The crucial issue of quantum communication protocol is its security. In this paper, the security of the Quantum Authentication Scheme Based on Entanglement Swapping proposed by Penghao et al. (Int J Theor Phys., doi:10.1007/s10773-015-2662-7) is reanalyzed. It is shown that the original does not complete the task of quantum authentication and communication securely. Furthermore a simple improvement on the protocol is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India. IEEE, New York (1984)

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

  3. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 0323021 (2002)

    Article  Google Scholar 

  4. Li, C., Song, H.S., Zhou, L., Wu, C.F.: A random quantum key distribution achieved by using Bell states. J. Opt. B, Quantum Semiclass. Opt. 5(2), 155–157 (2003)

    Article  ADS  Google Scholar 

  5. Song, D.: Secure key distribution by swapping quantum entanglement. Phys. Rev. A 69(3), 034301 (2004)

    Article  ADS  Google Scholar 

  6. Namiki, R., Hirono, T.: Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection. Phys. Rev. A 74, 032302 (2006)

    Article  ADS  Google Scholar 

  7. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100. Proc. Inf. Secur. 1, 43–45 (2007)

    Article  Google Scholar 

  8. Hwang, H., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans. Dependable Secure Comput. 4, 71–80 (2007)

    Article  Google Scholar 

  9. Gan, G.: Quantum key distribution scheme with high efficiency. Commun. Theor. Phys. 51(5), 820–822 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Lo, H. K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  11. Zhang, Y.S., Li, C.F., Guo, G.C.: Quantum key distribution via quantum encryption. Phys. Rev. A 64, 024302 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Leung, D.W.: Quantum vernam cipher. Quantum Inf. Comput. 2, 14 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  14. Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Deng, F.G., et al.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006)

    Article  ADS  Google Scholar 

  16. Li, X.H., et al.: Multiparty quantum remote secret conference. Chin. Phys. Lett. 24, 23–26 (2007)

    Article  ADS  Google Scholar 

  17. Zhou, N., Liu, Y., Zeng, G., Xiong, J., Zhu, F.: Novel qubit block encryption algorithm with hybrid keys. Physica A 375, 693178 (2007)

    Google Scholar 

  18. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  19. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  21. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  22. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  23. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  24. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)

    Article  ADS  Google Scholar 

  25. Li, X.H., Zhou, P., Li, C.Y., Zhou, H.Y., Deng, F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B 39, 1975 (2006)

    Article  ADS  Google Scholar 

  26. Deng, F.G., Li, X.H., Zhou, H.Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Lett. A 372, 1957 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  27. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  28. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  29. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  30. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  31. Wang, C., et al.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  32. Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149–2153 (2007)

    Article  ADS  Google Scholar 

  33. Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)

    Article  ADS  Google Scholar 

  34. Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China:Phys. Mech. Astron. 54, 942–947 (2011)

    ADS  Google Scholar 

  35. Gu, B., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)

    Article  ADS  Google Scholar 

  36. Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wu, Y.H., Zhai, W.D., Cao, W.Z., Li, C.: Quantum secure direct communication by using general entangled states. Int. J. Theor. Phys. 50, 325–331 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gao, G., Fang, M., Yang, R.M.: Quantum secure direct communication by swapping entanglements of 317 dimensional bell states. Int. J. Theor. Phys. 50, 882–887 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)

    Article  MATH  Google Scholar 

  40. Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ren, B.C., et al.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30 (2013)

    Article  ADS  Google Scholar 

  42. Gu, B., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52, 4461–4469 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bulletin 58, 4571–4576 (2013)

    Article  Google Scholar 

  45. Bostrm, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  46. Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601–603 (2004)

    Article  ADS  Google Scholar 

  47. Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  48. Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328, 617 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wen, X.J., et al.: Secure quantum telephone. Opt. Commun. 275, 2781472 (2007)

    Article  Google Scholar 

  50. Sun, Y., et al.: Improving the security of secure quantum telephone against an attack with fake particles and local operations. Opt. Commun. 282, 22781780 (2009). doi:10.1016.j.optcom.2009.02.033

    Google Scholar 

  51. Naseri, M.: Eavesdropping on secure quantum telephone protocol with dishonest server. Opt. Commun. 282, 33751778 (2009). doi:10.1016/j.optcom.2009.05.012

    Google Scholar 

  52. Jin, X.R., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354, 67 (2006)

    Article  ADS  Google Scholar 

  53. Deng, F.G., et al.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 16761779 (2006)

    Google Scholar 

  54. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun 282, 19391743 (2009)

    Google Scholar 

  55. Chamoli, A., Bhandari, C.M.: Secure direct communication b ased on ping-pong protocol. Quantum Inf. Process 8, 347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Naseri, M.: Comment on:“secure direct communication based on ping-pong protocol” [Quantum Inf. Process, 8, 347 (2009)]. Quantum Inf. Process 9, 693–698 (2009)

  57. Ljunggren, D., Bourennane, M., Karlsson, A.: Authority-based user authentication in quantum key distribution. Phys. Rev. A 62, 022305 (2000)

    Article  ADS  Google Scholar 

  58. Zeng, G.H., Zhang, W.P.: Identity verification in quantum key distribution. Phys. Rev. A 61, 022303 (2000)

    Article  ADS  Google Scholar 

  59. Shi, B.S., Li, J., Liu, J.M., Fan, X.F., Guo, G.C.: Quantum key distribution and quantum authentication based on entangled state. Phys. Lett. A 281, 83–87 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64, 062309 (2001)

    Article  ADS  Google Scholar 

  61. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65, 052326 (2002)

    Article  ADS  Google Scholar 

  62. Li, X.O.: Quantum authentication using entangled states. Int. J. Found. Comput. Sci. 15(4), 609–617 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhou, N.R., Zeng, G.H., Zeng, W.J., Zhu, F.H.: Cross-center quantum identification scheme based on teleportation and entanglement swapping. Opt. Commun. 254, 380–388 (2005)

    Article  ADS  Google Scholar 

  64. Zhang, Z.H., Zeng, G.H., Zhou, N.R., Xiong, J.: Quantum identity authentication based on ping-pong technique for photons. Phys. Lett. A 356, 199–205 (2006)

    Article  ADS  MATH  Google Scholar 

  65. Yang, Y.G., Wen, Q.Y., Zhu, F.C.: An efficient quantum secure direct communication scheme with authentication. Chin. Phys. B 16(7), 1838–1842 (2007)

    Article  ADS  Google Scholar 

  66. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with single photons. Chin. Phys. B 18(8), 3189–3192 (2009)

    Article  ADS  Google Scholar 

  67. Penghao, N., et al.: Quantum authentication scheme based on entanglement swapping. Int. J. Theor. Phys. doi:10.1007/s10773-015-2662-7

Download references

Acknowledgment

This work is supported by Islamic Azad University, Kermanshah Branch, Kermanshah, IRAN. The author would like to thank Soheila Gholipour, Yasna Naseri and Viana Naseri for their interests in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mosayeb Naseri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, M. Revisiting Quantum Authentication Scheme Based on Entanglement Swapping. Int J Theor Phys 55, 2428–2435 (2016). https://doi.org/10.1007/s10773-015-2880-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2880-z

Keywords

Navigation