Skip to main content
Log in

Controlled Dense Coding Using the Maximal Slice States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate the controlled dense coding with the maximal slice states. Three schemes are presented. Our schemes employ the maximal slice states as quantum channel, which consists of the tripartite entangled state from the first party(Alice), the second party(Bob), the third party(Cliff). The supervisor(Cliff) can supervises and controls the channel between Alice and Bob via measurement. Through carrying out local von Neumann measurement, controlled-NOT operation and positive operator-valued measure(POVM), and introducing an auxiliary particle, we can obtain the success probability of dense coding. It is shown that the success probability of information transmitted from Alice to Bob is usually less than one. The average amount of information for each scheme is calculated in detail. These results offer deeper insight into quantum dense coding via quantum channels of partially entangled states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.J.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Wiesnner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  4. Fang, X., Zhu, X., Feng, M., et al.: Experimental implementation of dense coding using nuclear magnetic resonance. Phys. Rev. A 61, 022307 (2000)

    Article  ADS  Google Scholar 

  5. Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57, 822 (1998)

    Article  ADS  Google Scholar 

  6. Lee, H.J., Ahn, D., Hwang, S.W.: Dense coding in entangled states. Phys. Rev. A 66, 024304 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bose, S., Plenio, M.B., Vedral, V.: Mixed state dense coding and its relation to entanglement measures. J. Mod. Opt 47, 291–310 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  9. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  10. Grudka, A., Wjcik, A.: Symmetric scheme for superdense coding between multiparties. Phys. Rev. A 66, 014301 (2002)

    Article  ADS  Google Scholar 

  11. Cereceda, J.L.: Quantum dense coding using three qubits. arXiv preprint quant-ph/0105096 (2001)

  12. Wang, X.W., Peng, Z.H., Jia, C.X., et al.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun 282, 670–673 (2009)

    Article  ADS  Google Scholar 

  13. Wang, X.W., Shan, Y.G., Xia, L.X., et al.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7–11 (2007)

    Article  ADS  MATH  Google Scholar 

  14. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nature physics 4, 282–286 (2008)

    Article  Google Scholar 

  15. Wei, D., Yang, X., Luo, J., et al.: NMR experimental implementation of three-parties quantum superdense coding. Chin. Sci. Bull 49, 423–426 (2004)

    Article  MATH  Google Scholar 

  16. Braunstein, S.L., Kimble, H.J.: Dense coding for continuous variables. Phys. Rev. A 61, 042302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Ban, M.: Reliability function of quantum dense coding of continuous variables. Opt. Commun. 189, 97–102 (2001)

    Article  ADS  Google Scholar 

  18. Jing, J., Zhang, J., Yan, Y., et al.: Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett. 90, 167903 (2003)

    Article  ADS  Google Scholar 

  19. Chen, J.L., Kuang, L.M.: Quantum dense coding in multiparticle entangled states via local measurements. Chin. Phys. Lett. 21, 12–14 (2004)

    Article  ADS  Google Scholar 

  20. Hao, J.C., Li, C.F., Guo, G.C.: Controlled dense coding using the Greenberger-Horne-Zeilinger state. Phys. Rev. A 63, 054301 (2001)

    Article  ADS  Google Scholar 

  21. Zhang, J., Braunstein, S.L.: Continuous-variable Gaussian analog of cluster states. Phys. Rev. A 66, 032318 (2002)

    Article  ADS  Google Scholar 

  22. Chen, J.L., Kuang, L.M.: Quantum dense coding in multiparticle entangled states via local measurements. Chin. Phys. Lett. 21, 12 (2004)

    Article  ADS  Google Scholar 

  23. Fu, C.B., Xia, Y., Liu, B.X., et al.: Controlled quantum dense coding in a four-particle non-maximally entangled state via local measurements. arXiv preprint quant-ph/0601144 (2006)

  24. Huang, Y.B., Li, S.S., Nie, Y.Y.: Controlled dense coding via GHZ-class state. Int.J. Mod. Phys C 19, 1509–1514 (2008)

    Article  ADS  MATH  Google Scholar 

  25. Huang, Y.B., Li, S.S., Nie, Y.Y.: Controlled dense coding between multi-parties. Int.J. Theor. Phys. 48, 95–100 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jiang, D.Y., Wu, R.S., Li, S.S., et al.: Controlled dense coding with symmetric state. Int.J. Theor. Phys. 48, 2297–2304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Li, S.S.: Dense coding with cluster state via local measurements. Int.J. Theor. Phys. 51, 724–730 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nie, Y., Li, Y., Sang, M.: Controlled dense coding through a genuine five-Atom entangled state in cavity QED. Int.J. Theor. Phys. 51, 2341–2345 (2012)

    Article  MATH  Google Scholar 

  29. Yi, X.J., Wang, J.M., Huang, G Q.: Controlled dense coding with six-qubit cluster state. Int.J. Theor. Phys. 50, 364–370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo, C.L., Ouyang, X.F.: Controlled dense coding via generalized measurement. Int.J. Quant. Inf. 7, 365–372 (2009)

    Article  MATH  Google Scholar 

  31. Ye, L., Yu, L.B.: Scheme for implementing quantum dense coding using tripartite entanglement in cavity QED. Phys. Lett. A 346, 330–336 (2005)

    Article  ADS  Google Scholar 

  32. Yang, R.C., Li, H.C., Lin, X., et al.: Scheme for controlled dense coding via cavity decay. Commun. Theor. Phys. 48, 48 (2007)

    Article  ADS  Google Scholar 

  33. Chen, W.W., Huang, Y.X., Liu, T.K., et al.: Quantum dense coding using a peculiar tripartite entangled state. Chin. Phys. 16, 38 (2007)

    Article  ADS  Google Scholar 

  34. Liu, L.S., Chen, G., Rao, S.: Controlled dense coding with generalized GHZ-type state. Int.J. Theor. Phys. 51, 3970–3977 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xue, Z.Y., Yi, Y., Cao, Z.: Quantum dense coding via cavity decay. J. Mod. Opt. 53, 2725–2732 (2006)

    Article  ADS  MATH  Google Scholar 

  36. Huang, J., Huang, G.: Dense coding with extended GHZ-W state via local measurements. Int. J. Theor. Phys. 50, 2842–2849 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, G.Q., Luo, C.L.: Controlled dense coding with cluster state. Int. J. Quant. Inf. 10, 1250022 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wan, H.Q.: Controlled dense coding with a four-particle non-maximally entangled state. Int. J. Theor. Phys. 49, 2172–2179 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, L.S., Hu, G.J., Rao, S.: Controlled dense coding with four-particle entangled state. Int. J. Theor. Phys. 52, 2904–2909 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Duan, L.M., Giedke, G., Cirac, J.I., Zoller, P.: Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002 (2000)

    Article  ADS  MATH  Google Scholar 

  41. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  42. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Euro. Phys. Lett. 84, 50001 (2008)

    Article  ADS  Google Scholar 

  43. Carteret, H.A.: Sudbery A,J.: Local symmetry properties of pure three-qubit states. Phys. A 33, 4981 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  45. Kumar, A., Adhikari, S., Banerjee, S.: Optimal quantum communication using multiparticle partially entangled states. Phys. Rev. A 87, 022307 (2013)

    Article  ADS  Google Scholar 

  46. Cai, X.F., Yu, X.T., Shi, L.H.: Partially entangled states bridge in quantum teleportation. Front. Phys. 9, 646–651 (2014)

    Article  Google Scholar 

  47. Li, X.H., Ghose, S.: Control power in perfect controlled teleportation via partially entangled channels. Phys. Rev. A 90, 052305 (2014)

    Article  ADS  Google Scholar 

  48. Wang, J., Shu, L., Mo, Z.W.: Controlled teleportation of a qudit state by partially entangled GHZ states. Int. J. Theor. Phys. 53, 2867–2873 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20135134110003), Scientific Reserch Fund of SiChuan Provincial Education Department (Grant No.11ZB153, 2015JY0002) and Scientific Research Fund of Sichuan University for Nationalities(Grant No.13XYZB011, 12XYZB006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Mo, Zw. & Sun, Sq. Controlled Dense Coding Using the Maximal Slice States. Int J Theor Phys 55, 2182–2188 (2016). https://doi.org/10.1007/s10773-015-2857-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2857-y

Keywords

Navigation