Skip to main content
Log in

Weak Measurements Destroy Too Much Quantum Correlation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum correlation under weak measurements is studied via skew information. For 2 × d-dimensional states, it can be given by a closed form which linearly depends on the quantum correlation [EPL. 107 (2014) 10007] determined by the strength of the weak measurement. It is found that the quantum correlation under weak measurements only captures partial quantumness of the state. In particular, the extraction of the residual quantumness by the latter measurements will inevitably destroy too much quantumness. To demonstration, the Werner state is given as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK (2000)

    MATH  Google Scholar 

  2. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  3. Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95, 110409 (2005)

    Article  ADS  Google Scholar 

  4. Hosten, O., Kwiat, P.: Observation of the spin hall effect of light via weak measurements. Science 319, 787 (2008)

    Article  ADS  Google Scholar 

  5. Gorodetski, Y., et al.: Weak measurements of light chirality with a plasmonic slit. Phys. Rev. Lett. 109, 013901 (2012)

    Article  ADS  Google Scholar 

  6. Dixon, P.B., et al.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009)

    Article  ADS  Google Scholar 

  7. Williams, N.S., Jordan, A.N.: Weak values and the Leggett-Garg inequality in solid-state qubits. Phys. Rev. Lett. 100, 026804 (2008)

    Article  ADS  Google Scholar 

  8. Palacios-Laloy, A., et al.: Experimental violation of a Bells inequality in time with weak measurement. Nat. Phys. 6, 442 (2010)

    Article  Google Scholar 

  9. Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardys paradox. Phys. Rev. Lett. 102, 020404 (2009)

    Article  ADS  Google Scholar 

  10. Smith, G.A., et al.: Continuous weak measurement and nonlinear dynamics in a cold spin ensemble. Phys. Rev. Lett. 93, 163602 (2004)

    Article  ADS  Google Scholar 

  11. Lundeen, J.S., et al.: Direct measurement of the quantum wavefunction. Nature (London) 474, 188 (2011)

    Article  Google Scholar 

  12. Kim, Y.S., et al.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nat. Phys. 8, 117 (2012)

    Article  Google Scholar 

  13. Wu, S., Li, Y.: Weak measurements beyond the Aharonov-Albert-Vaidman formalism. Phys. Rev. A 83, 052106 (2011)

    Article  ADS  Google Scholar 

  14. Xu, X.Y., et al.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013)

    Article  ADS  Google Scholar 

  15. Singh, U., Pati, A.K.: Quantum discord with weak measurements. Ann. Phys 343, 141 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Yu, C.S., Zhao, H.: Direct measure of quantum correlation. Phys. Rev. A 84, 062123 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  17. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  18. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  19. Oppenheim, J., Horodecki, M., Horodecki, P., Horodecki, R.: Thermodynamical approach to quantifying quantum correlations. Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  20. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  22. Paula, F.M, de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  23. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  25. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  26. Tufarelli, T., MacLean, T., Girolami, D., Vasile, R., Adesso, G.: The geometric approach to quantum correlations: Computability versus reliability. J. Phys. A 46, 275308 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Ollivier, H., Zurek, W.H.: Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  29. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  30. Wang, Y.K., Ma, T., Fan, H., Fei, S.M., Wang, Z.X.: Super-quantum correlation and geometry for Bell-diagonal states with weak measurements. Q. Inf. Process 13, 283 (2014)

    Article  MATH  Google Scholar 

  31. Huai, L.P., Li, B., Qu, S.X., Fan, H.: Quantum advantage by weak measurements. arXiv:1305.6366

  32. Hu, M.L., Fan, H., Tian, D.P.: Dual role of weak measurements for quantum correlation. arXiv:1304.5074

  33. Zhang, J., Wu, S.X., Yu, C.S.: Quantum correlation cost of the weak measurement. Ann. Phys. 351, 104 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. Singh, U., Pati, A.K.: Weak measurement induced super discord can resurrect lost quantumness. arXiv:1305.4393

  35. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  36. Wigner, E.P., Yanase, M.M.: Information contents of distribution. Proc. Natl. Acad. Sci. U.S.A. 49, 910 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Luo, S., Fu, S., Oh, C.H.: Quantifying correlations via the Wigner-Yanase skew information. Phys. Rev. A 85, 032117 (2012)

    Article  ADS  Google Scholar 

  38. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  39. Yu, C.S., Wu, S.X., Wang, X., Yi, X.X., Song, H.S.: Quantum correlation measure in arbitrary bipartite systems. EPL 107, 10007 (2014)

    Article  ADS  Google Scholar 

  40. Wu, S.X., Zhang, J., Yu, C.S., Song, H.S.: Uncertainty-induced quantum nonlocality. Phys. Lett. A 378, 344 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China, under Grants No. 11175033 and No. 11375036, the Xinghai Scholar Cultivation Plan and the Fundamental Research Funds for the Central Universities under grants NO. DUT15LK35.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-shui Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Sx., Zhang, J., Yu, Cs. et al. Weak Measurements Destroy Too Much Quantum Correlation. Int J Theor Phys 55, 62–70 (2016). https://doi.org/10.1007/s10773-015-2633-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2633-z

Keywords

Navigation