Skip to main content
Log in

The Coherence Time of Quantum Rod Qubit

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum systems are usually very fragile and external fields will break the quantum coherence for information storing. Here we study the properties of coherence time (CT) of a quantum rod (QR) qubit by the Pekar type variational (PTV) method. Our numerical results show that the CT will increase with increasing QR’s transverse and longitudinal effective confinement lengths (TLECLs), whereas it is a decreasing function of the ellipsoidal aspect ratio (EAR) and polaron radius (PR). Consequently, we can improve the CT by (i) increasing the TLECLs; (ii) decreasing the EAR and PR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity qed. Phys. Rev. Lett. 83, 4204–4207 (1999)

    Article  ADS  Google Scholar 

  2. Troiani, F., Hohenester, U., Molinari, E.: Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing. Phys. Rev. B 62, R2263–R2266 (2000)

    Article  ADS  Google Scholar 

  3. Reina, J.H., Quiroga, L., Johnson, N.F.: Quantum entanglement and information processing via excitons in optically driven quantum dots. Phys. Rev. A 62, 012305 (2000)

    Article  ADS  Google Scholar 

  4. Krenner, H.J., Stufler, S., Sabathil, M., Clark, E.C., Ester, P., Bichler, M., Abstreiter, G., Finley, J.J., Zrenner, A.: Recent advances in exciton-based quantum information processing in quantum dot nanostructures. New. J. Phys. 7, 184 (2005)

    Article  ADS  Google Scholar 

  5. Konstantatos, G., Huang, C.J., Levina, L., Lu, Z.H., Sargent, E.H.: Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv. Funct. Mater. 15, 1865–1869 (2005)

    Article  Google Scholar 

  6. Persano, A., Leo, G., Manna, L., Cola, A.: Charge carrier transport in thin films of colloidal cdse quantum rods. J. Appl. Phys. 104, 074306–6 (2008)

    Article  ADS  Google Scholar 

  7. Htoon, H., Hollingsworth, J.A., Dickerson, R., Klimov, V.I.: Effect of zero- to one-dimensional transformation on multiparticle auger recombination in semiconductor quantum rods. Phys. Rev. Lett. 91, 227401–4 (2003)

    Article  ADS  Google Scholar 

  8. Li, S.S., Xia, J.B., Liu, J.L., Yang, F.H., Niu, Z.C., Feng, S.L., Zheng, H.Z.: Inas/gaas single-electron quantum dot qubit. J. Appl. Phys. 90, 6151–6155 (2001)

    Article  ADS  Google Scholar 

  9. Engel, H.A., Recher, P., Loss, D.: Electron spins in quantum dots for spintronics and quantum computation. Solid State Commun. 119, 229–236 (2001)

    Article  ADS  Google Scholar 

  10. Kielpinski, D., Monroe, C., Wineland, D.J.: Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002)

    Article  ADS  Google Scholar 

  11. Xiang, S.-H., Song, K.-H.: Entanglement decoherence of two-particle entangled states in a noisy environment. Acta Phys. Sin. 55, 529–534 (2006)

    Google Scholar 

  12. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005)

    Article  ADS  Google Scholar 

  13. Kaji, R., Ohno, S., Hozumi, T., Adachi, S.: Effects of valence band mixing on hole spin coherence via hole-nuclei hyperfine interaction in inalas quantum dots. J. Appl. Phys. 113, 203511–6 (2013)

    Article  ADS  Google Scholar 

  14. Varwig, S., Rene, A., Greilich, A., Yakovlev, D.R., Reuter, D., Wieck, A.D., Bayer, M.: Temperature dependence of hole spin coherence in (in, ga) as quantum dots measured by mode-locking and echo techniques. Phys. Rev. B 87, 115307–6 (2013)

    Article  ADS  Google Scholar 

  15. Caram, J.R., Zheng, H., Dahlberg, P.D., Rolczynski, B.S., Griffin, G.B., Fidler, A.F., Dolzhnikov, D.S., Talapin, D.V., Engel, G.S.: Persistent interexcitonic quantum coherence in cdse quantum dots. J. Phys. Chem. Lett. 5, 196–204 (2014)

    Article  Google Scholar 

  16. Zhang, Z.B., Jin, Z.M., Ma, H., Xu, Y., Lin, X., Ma, G.H., Sun, X.L.: Room-temperature spin coherence in zinc blende cdse quantum dots studied by time-resolved faraday ellipticity. Physica. E 56, 85–89 (2014)

    Article  ADS  Google Scholar 

  17. Trentler, T.J., Hickman, K.M., Goel, S.C., Viano, A.M., Gibbons, P.C., Buhro, W.E.: Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth. Science 270, 1791–1794 (1995)

    Article  ADS  Google Scholar 

  18. Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., Alivisatos, A.P.: Shape control of cdse nanocrystals. Nature 404, 59–61 (2000)

    Article  ADS  Google Scholar 

  19. Kan, S., Mokari, T., Rothenberg, E., Banin, U.: Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater. 2, 155–158 (2003)

    Article  ADS  Google Scholar 

  20. Xiao, W., Xiao, J.L.: Transition frequency of strong-coupling magnetopolaron in quantum rods. J. Low Temp. Phys. 165, 78–88 (2011)

    Article  ADS  Google Scholar 

  21. Xiao, W., Xiao, J.L.: Coulomb bound potential quantum rod qubit. Superlattices Microstruct. 52, 851–860 (2012)

    Article  ADS  Google Scholar 

  22. Xiao, W., Xiao, J.L.: The effect of impurity on transition frequency of bound polaron in quantum rods. Pramana-J. Phys. 79, 1485–1493 (2012)

    Google Scholar 

  23. Li, X.-Z., Xia, J.-B.: Electronic structure and optical properties of quantum rods with wurtzite structure. Phys. Rev. B 66, 115316 (2002)

    Article  ADS  Google Scholar 

  24. Pekar, S.I.: Local quantum states of electrons in an ideal ion crystal. Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki 16, 341–348 (1946)

    Google Scholar 

  25. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics (Nonrelativistic Theory). London (1987)

  26. Rigetti, C., Gambetta, J.M., Poletto, S., Plourde, B.L.T., Chow, J.M., Córcoles, A.D., Smolin, J.A., Merkel, S.T., Rozen, J.R., Keefe, G.A., Rothwell, M.B., Ketchen, M.B., Steffen, M.: Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Phys. Rev. B 86, 100506 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China under Grant No. 11464034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, C., Zhao, C. & Xiao, J. The Coherence Time of Quantum Rod Qubit. Int J Theor Phys 54, 1269–1274 (2015). https://doi.org/10.1007/s10773-014-2324-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2324-1

Keywords

Navigation