Skip to main content
Log in

Transition Frequency of Strong-Coupling Magnetopolaron in Quantum Rods

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The Hamiltonian of a quantum rod with an ellipsoidal boundary is given after a coordinate transformation, which changes the ellipsoidal boundary into a spherical one. We then study the first excited state energy, the excitation energy and the transition frequency between the first excited and the ground states of the strong-coupling magnetopolaron in it. The effects of the magnetic field cyclotron frequency, the electron-phonon coupling strength, the transverse and longitudinal effective confinement lengths and the aspect ratio of the ellipsoid are taken into consideration by using linear combination operator and the unitary transformation methods. It is found that the first excited state energy, the excitation energy and the transition frequency will increase with increasing the cyclotron frequency. They will increase with decreasing the transverse and longitudinal effective confinement lengths and the aspect ratio of the ellipsoid. The first excited state energy is decreasing functions of the electron-phonon coupling strength, whereas the excitation energy and the transition frequency are increasing functions of the electron-phonon coupling strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature (London) 404, 59 (2000)

    Article  ADS  Google Scholar 

  2. S.H. Kan, T. Mokari, E. Rothenberg, U. Banin, Nature (London) 2, 155 (2003)

    Article  ADS  Google Scholar 

  3. J.T. Hu, L.S. Li, W.D. Yang, L. Manna, L.W. Wang, A.P. Alvisatos, Science 292, 2060 (2001)

    Article  Google Scholar 

  4. A. Creti, M.Z. Rossi, G. Lanzani, M. Anni, L. Manna, M. Lomascolo, Phys. Rev. B 73, 165410 (2006)

    Article  ADS  Google Scholar 

  5. X.W. Zhang, J.B. Xia, Phys. Rev. B 72, 205314 (2005)

    Article  ADS  Google Scholar 

  6. Z.X. Sun, I. Swart, C. Delerue, D. Vanmaekelbergh, P. Liljeroth, Phys. Rev. Lett. 102, 196401 (2009)

    Article  ADS  Google Scholar 

  7. G. Sek, P. Podemski, J. Misiewicz, L.H. Li, A. Fiore, G. Patriarche, Appl. Phys. Lett. 92, 021901 (2008)

    Article  ADS  Google Scholar 

  8. A. Persano, G. Leo, L. Manna, A. Cola, J. Appl. Phys. 104, 074306 (2008)

    Article  ADS  Google Scholar 

  9. B. Bruhn, J. Valenta, J. Linnros, Nanotechnology 20, 505301 (2009)

    Article  Google Scholar 

  10. D. Sreenivasan, J.E.M. Haverkort, S.A. Maksimenko, G.Ya. Slepyan, J.He.R. Notzel, Physica E 40, 1985 (2008)

    Article  ADS  Google Scholar 

  11. X.Z. Li, J.B. Xia, Phys. Rev. B 66, 115316 (2002)

    Article  ADS  Google Scholar 

  12. J.B. Li, L.W. Wang, Nano Lett. 4, 29 (2004)

    Article  ADS  Google Scholar 

  13. J.I. Climente, M. Royo, J.L. Movilla, J. Planelles, Phys. Rev. B 79, 161301(R) (2009)

    Article  ADS  Google Scholar 

  14. H. Talaat, T. Abdallah, M.B. Mohamed, S. Negm, M.A El-Sayed, Chem. Phys. Lett. 473, 288 (2009)

    Article  ADS  Google Scholar 

  15. J.L. Xiao, C.L. Zhao, Superlattices Microstruct. 49, 9 (2011)

    Article  ADS  Google Scholar 

  16. C.L. Zhao, J.L. Xiao, J. Low Temp. Phys. 160, 209 (2010)

    Article  ADS  Google Scholar 

  17. G. Hohler, A. Müllensiefen, Z. Phys. 157, 169 (1959)

    ADS  Google Scholar 

  18. W.J. Huybrechts, J. Phys. C 10, 3761 (1977)

    Article  ADS  Google Scholar 

  19. T.D. Lee, F.E. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S.I. Pekar, Untersuchungen über die Elektronentheorie der Kristalle (Akademie-Verlag, Berlin, 1954)

    MATH  Google Scholar 

  21. E. Kartheuser, R. Evrard, J. Devreese, Phys. Rev. Lett. 22, 94 (1969)

    Article  ADS  Google Scholar 

  22. Z.W. Wang, J.L. Xiao, Acta Phys. Sin. 56, 678 (2007)

    Google Scholar 

  23. J.W. Yin, J.L. Xiao, Y.F. Yu, Z.W. Wang, Chin. Phys. B 18, 446 (2009)

    Article  ADS  Google Scholar 

  24. H.J. Li, J.K. Sun, J.L. Xiao, Chin. Phys. B 19, 010314 (2010)

    Article  ADS  Google Scholar 

  25. J.T. Hu, L.W. Wang, L.S. Li, W.D. Yang, A.P. Alivisatos, J. Phys. Chem. B 106, 2447 (2002)

    Article  Google Scholar 

  26. J.B. Li, L.W. Wang, Nano Lett. 3, 101 (2003)

    Article  ADS  Google Scholar 

  27. J. Planelles, M. Royo, A. Ballester, M. Pi, Phys. Rev. B 80, 045324 (2009)

    Article  ADS  Google Scholar 

  28. S.S. Li, J.B. Xia, Appl. Phys. Lett. 92, 022102 (2008)

    Article  ADS  Google Scholar 

  29. G.Q. Hai, F.M. Peeters, J.T. Devreese, Phys. Rev. B42, 11063 (1990)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, W., Xiao, Jl. Transition Frequency of Strong-Coupling Magnetopolaron in Quantum Rods. J Low Temp Phys 165, 78 (2011). https://doi.org/10.1007/s10909-011-0400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-011-0400-y

Keywords

Navigation