Skip to main content
Log in

New optimal variable step size-adaptive regularized-affine projection algorithm

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

In this paper, a new optimal variable step size-adaptive regularized-affine projection algorithm (OVSS-AR-APA) is proposed and compared with existing variable step size APA family of algorithms. Instead of having a constant regularization parameter, the modified sigmoid function variation is used to choose the optimum regularization parameter in the proposed algorithm. Here, the algorithm dynamically adjusts the regularization parameter according to input noise variations. Also, the exponentially weighted value of the error with variable regularization parameter is used for making the step size parameter variable. The existing and proposed algorithms are implemented for noise cancellation from audio signals at various input SNR levels for different filter orders. It is observed from simulations that the proposed algorithm outperforms the existing algorithms in terms of SNR improvements, MSE and convergence rate at all input SNR levels for different filter orders with moderate computational complexity. The OVSS-AR-APA algorithm shows a maximum of 21.54 dB of improvement in SNR at -20dB input SNR level at filter order 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anghel, C., & Ciochina, S. (2017). On the FPGA Implementation of the VR-RLS algorithms.In16th International Conference on Networks (ICN 2017), Venice, Italy, April 23–27, 2017, pp. 98–101.

  • Benesty, J., Gaensler, T., Morgan, D. R., Sondhi, M. M., & Gay, S. L. (2001). Advances in network and acoustic echo cancellation. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Benesty, J., Paleologu, C., & Ciochina, S. (2011). On regularization in adaptive filtering. IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 1734–1742.

    Article  MATH  Google Scholar 

  • Choi, Y. S., Shin, H. C., & Song, W. J. (2006). Affine projection algorithms with adaptive regularization matrix. In IEEE International Conference on Acoustic Speech and Signal Processing, Toulouse (France), 5, pp. 201–204.

  • Choi, Y. S., Shin, H. C., & Song, W. J. (2007). Adaptive regularization matrix for affine projection algorithm. IEEE Transactions on Circuits and Systems—II, 54, 1087–1091.

    Google Scholar 

  • Fan, Y., & Zhang, J. (2009). Variable step-size affine projection algorithm with exponential smoothing factors. IEEE Electronics Letters, 45(17), 911–913.

    Article  Google Scholar 

  • Gupta, D. K., Gupta, V. K., & Chandra, M. (2014). Review paper on linear and nonlinear acoustic echo cancellation. In 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Odisha (India), vol. 2, pp. 465–473.

  • Gupta, V. K., Chandra, M., & Saran, S. N. (2013). Acoustic echo and noise cancellation system for hand-free telecommunication using variable step size algorithms. Radio Engineering, 22(1), 200–207.

    Google Scholar 

  • Gupta, V. K., Chandra, M., & Sharan, S. N. (2012). Noise minimization from speech signals using RLS algorithm with variable forgetting factor. Research Journal of Applied Sciences, Engineering and Technology, 4(17), 3102–3107.

    Google Scholar 

  • Gupta, V. K., Gupta, D. K., & Chandra, M. (2014). Real time noise canceller using modified sigmoid function RLS algorithm. In 5th International Conference on Computational Vision and Robotic, Odisha (India), pp. 63–70.

  • Haykin, S. (2002). Adaptive filter theory (4th edn.). Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Ozeki, K. (2016). Theory of affine projection algorithms for adaptive filtering: Mathematics for Industry, vol. 22, New York: Springer.

    MATH  Google Scholar 

  • Ozeki, K., & Umeda, T. (1984). An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electronics and Communication Japan, 67(5), 19–27.

    Article  MathSciNet  Google Scholar 

  • Paleologu, C., Benesty, J., & Albu, F. (2012). Regularization of the improved proportionate affine projection algorithm. In IEEE International Conference on Acoustics, Speech and Signal Processing, Kyoto (Japan), pp. 169–172.

  • Paleologu, C., Benesty, J., & Ciochina, S. (2010). Sparse adaptive filters for echo cancellation. San Rafael: Morgan and Claypool Publishers.

    Book  MATH  Google Scholar 

  • Paleologu, C., Benesty, J., & Ciochina, S. A. (2008). Variable step-size affine projection algorithm designed for acoustic echo cancellation. IEEE Transactions on Audio, Speech, and Language Processing, 16(8), 1466–1478.

    Article  Google Scholar 

  • Rey, H., Vega, L. R., Tressens, S., & Frias, B. C. (2004). Analysis of explicit regularization in affine projection algorithms: Robustness and optimal choice. In 12th European Signal Processing Conference, Vienna (Austria), 1, pp. 1089–1092.

  • Rey, H., Vega, R. L., Tressens, S., & Benesty, J. (2007). Variable explicit regularization in affine projection algorithm: Robustness issues and optimal choice. IEEE Transaction on Signal Processing, 55(5), 2096–2108.

    Article  MathSciNet  MATH  Google Scholar 

  • Samudravijaya, K., Rao, P. V. S., & Agrawal, S. S. (2000). Hindi speech database. In 6th International Conference on Spoken Language Processing (ICSLP). Beijing (China), CDROM 00192.pdf.

  • Sayed, A. H. (2003). Fundamental of adaptive filtering. Hoboken (NJ: Wiley.

    Google Scholar 

  • Shin, H. C., & Sayed, A. H. (2004). Mean-square performance of a family of affine projection algorithms. IEEE Transactions on Signal Processing, 52(1), 90–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Shin, H. C., Sayed, A. H., & Song, W. J. (2004). Variable step-size NLMS and affine projection algorithms. IEEE Signal Processing Letters, 11(2), 132–135.

    Article  Google Scholar 

  • Varga, A., Steeneken, H. J. M., & Jones, D. (1992). The noisex-92 study on the effect of additive noise on automatic speech recognition system. Reports of NATO Research Study Group (RSG.10)..

  • Wang, J. (2009). A variable forgetting factor RLS adaptive filtering algorithm. In 3rd International symposium on Microwave, Antenna, propagation and EMC technologies for wireless communication, Beijing (China), pp. 1127–1130.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, D.K., Gupta, V.K., Chandra, M. et al. New optimal variable step size-adaptive regularized-affine projection algorithm. Int J Speech Technol 22, 179–189 (2019). https://doi.org/10.1007/s10772-019-09591-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-019-09591-z

Keywords

Navigation