Skip to main content
Log in

Fibre Orientation Evaluation of Cellulose Nanofibre Films Through Rapid Measurement of Thermal Diffusivity Anisotropy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Rapid evaluation of the anisotropy of heat transfer components is an industrially important issue for the development of highly efficient heat removal materials in electronics. With the increasing amount of generated heat from them, thermal management of these material has become increasingly important. In this study, we applied our previously developed lock-in thermographic periodic heating method (LTPHM) to unidirectionally oriented cellulose nanofibre films, which have relatively high thermal conductivity among polymers and characteristic heat transfer anisotropy, to perform in-plane anisotropy analysis. The obtained thermal diffusivity anisotropy was highly correlated with the orientational order parameter measured by wide-angle X-ray scattering, structural anisotropy derived from Raman spectroscopy, and thermal diffusivity measured by spot periodic heating radiation thermometry. Moreover, our LTPHM has a much shorter analysis time than any of the other methods, demonstrating that it can perform prompt anisotropy evaluation. This technique is expected to be utilised as a future industrial inspection technology for developing high-performance anisotropic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Xu, D. Kraemer, B. Song, Z. Jiang, J. Zhou, J. Loomis, J. Wang, M. Li, H. Ghasemi, X. Huang, X. Li, G. Chen, Nat. Commun. 10, 1771 (2019). https://doi.org/10.1038/s41467-019-09697-7

    Article  ADS  Google Scholar 

  2. A. Chen, Y. Wu, S. Zhou, W. Xu, W. Jiang, Y. Lv, W. Guo, K. Chi, Q. Sun, T. Fu, T. Xie, Y. Zhu, X.-G. Liang, Mater Adv. 1, 1996 (2020)

    Article  Google Scholar 

  3. K. Uetani, T. Okada, H.T. Oyama, ACS Macro Lett. 6, 345–349 (2017). https://doi.org/10.1021/acsmacrolett.7b00087

    Article  Google Scholar 

  4. J. Chen, X. Huang, B. Sun, P. Jiang, ACS Nano 13, 337–345 (2019). https://doi.org/10.1021/acsnano.8b06290

    Article  Google Scholar 

  5. J. Han, G. Du, W. Gao, H. Bai, Adv. Funct. Mater. 29, 1900412 (2019)

    Article  Google Scholar 

  6. R. Penide-Fernandez, F. Sansoz, Int. J. Heat Mass Transf. 145, 118721 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118721

    Article  Google Scholar 

  7. T. Li, J. Song, X. Zhao, Z. Yang, G. Pastel, S. Xu, C. Jia, J. Dai, C. Chen, A. Gong, F. Jiang, Y. Yao, T. Fan, B. Yang, L. Wågberg, R. Yang, L. Hu, Sci. Adv. 4, eaar724 (2018). https://doi.org/10.1126/sciadv.aar3724

    Article  Google Scholar 

  8. K.J. De France, K.G. Yager, T. Hoare, E.D. Cranston, Langmuir 32, 7564–7571 (2016). https://doi.org/10.1021/acs.langmuir.6b01827

    Article  Google Scholar 

  9. J.A. Diaz, X. Wu, A. Martini, J.P. Youngblood, R.J. Moon, Biomacromolecules 14, 2900–2908 (2013). https://doi.org/10.1021/bm400794e

    Article  Google Scholar 

  10. W. Gindl, K.J. Martinschitz, P. Boesecke, J. Keckes, Biomacromolecules 7, 3146–3150 (2006). https://doi.org/10.1021/bm060698u

    Article  Google Scholar 

  11. K.M. Håkansson, A.B. Fall, F. Lundell, S. Yu, C. Krywka, S.V. Roth, G. Santoro, M. Kvick, L. PrahlWittberg, L. Wågberg, L.D. Söderberg, Nat. Commun. 5, 4018 (2014). https://doi.org/10.1038/ncomms5018

    Article  ADS  Google Scholar 

  12. H. Sehaqui, N.E. Ezekiel Mushi, S. Morimune, M. Salajkova, T. Nishino, L.A. Berglund, A.C.S. Appl, Mater. Interfaces 4, 1043–1049 (2012). https://doi.org/10.1021/am2016766

    Article  Google Scholar 

  13. R.A. Chowdhury, S.X. Peng, J. Youngblood, Cellulose 24, 1957–1970 (2017). https://doi.org/10.1007/s10570-017-1250-9

    Article  Google Scholar 

  14. G. Siqueira, D. Kokkinis, R. Libanori, M.K. Hausmann, A.S. Gladman, A. Neels, P. Tingaut, T. Zimmermann, J.A. Lewis, A.R. Studart, Adv. Funct. Mater. 27, 1604619 (2017). https://doi.org/10.1002/adfm.201604619

    Article  Google Scholar 

  15. M. Alizadehgiashi, A. Khabibullin, Y. Li, E. Prince, M. Abolhasani, E. Kumacheva, Langmuir 34, 322–330 (2018). https://doi.org/10.1021/acs.langmuir.7b03648

    Article  Google Scholar 

  16. E. Cudjoe, M. Younesi, E. Cudjoe, O. Akkus, S.J. Rowan, Biomacromolecules 18, 1259–1267 (2017). https://doi.org/10.1021/acs.biomac.7b00005

    Article  Google Scholar 

  17. Y.-C. Hsieh, H. Yano, M. Nogi, S.J. Eichhorn, Cellulose 15, 507–513 (2008). https://doi.org/10.1007/s10570-008-9206-8

    Article  Google Scholar 

  18. S. Tanpichai, F. Quero, M. Nogi, H. Yano, R.J. Young, T. Lindström, W.W. Sampson, S.J. Eichhorn, Biomacromolecules 13, 1340–1349 (2012). https://doi.org/10.1021/bm300042t

    Article  Google Scholar 

  19. T. Ishizaki, H. Nagano, Int. J. Thermophys. 36, 2577–2589 (2015). https://doi.org/10.1007/s10765-014-1755-5

    Article  ADS  Google Scholar 

  20. R. Fujita, H. Nagano, Compos. Sci. Technol. 140, 116–122 (2017). https://doi.org/10.1016/j.compscitech.2016.12.006

    Article  Google Scholar 

  21. W. Adamczyk, R. Białecki, H.R.B. Orlande, Z. Ostrowski, Int. J. Heat Mass Transfer 154, 119659 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119659

    Article  Google Scholar 

  22. M. Larciprete, N. Orazi, Y.-S. Gloy, S. Paoloni, C. Sibilia, R. Li Voti, Sensors 22, 940 (2022). https://doi.org/10.3390/s22030940

    Article  ADS  Google Scholar 

  23. H. Kato, T. Baba, M. Okaji, Meas. Sci. Technol. 12, 2074–2080 (2001). https://doi.org/10.1088/0957-0233/12/12/307

    Article  ADS  Google Scholar 

  24. N. Yoshiharu, K. Shigenori, W. Masahisa, O. Takeshi, Macromolecules 30, 6395–6397 (1997). https://doi.org/10.1021/ma970503y

    Article  ADS  Google Scholar 

  25. B. Wang, J.G. Torres-Rendon, J. Yu, Y. Zhang, A. Walther, A.C.S. Appl, Mater. Interfaces 7, 4595–4607 (2015). https://doi.org/10.1021/am507726t

    Article  Google Scholar 

  26. K. Uetani, T. Okada, H.T. Oyama, Biomacromolecules 16, 2220–2227 (2015). https://doi.org/10.1021/acs.biomac.5b00617

    Article  Google Scholar 

  27. R.-Y. Dong, Y. Dong, Q. Li, C. Wan, Int. J. Heat Mass Transf. 148, 119155 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimihito Hatori.

Ethics declarations

Competing interests

The authors have no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hatori, K., Awano, T., Otsuki, T. et al. Fibre Orientation Evaluation of Cellulose Nanofibre Films Through Rapid Measurement of Thermal Diffusivity Anisotropy. Int J Thermophys 43, 84 (2022). https://doi.org/10.1007/s10765-022-03009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03009-w

Keywords

Navigation