Skip to main content
Log in

Application of Friction Theory and PC-SAFT for Estimation of Viscosity in Live Reservoir Fluid Systems

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work demonstrates an effective procedure to correlate and predict viscosity of petroleum fluids using friction theory (FT) viscosity model coupled with perturbed-chain statistical associating fluid theory (PC-SAFT). The FT is used for viscosity prediction in reservoir fluids. The PC-SAFT is applied for calculation of equilibrium composition and density of vapor and liquid phases. The FT has a few characteristic parameters for each component for viscosity prediction. These parameters are not available for petroleum fractions. In this study, such a problem is addressed by finding a model to predict FT characteristic parameters for different petroleum fractions as a function of molecular weight and critical pressure. 20 real reservoir fluid samples are used to develop the model. Afterward, for 5 real reservoir oil samples in the evaluation step, the viscosity modeling results are compared against experimental data, and the methods of Tan et. al., Lohrenz et al., and Pedersen et al. for showing the accuracy of proposed model. It is concluded that with suitable characteristic parameters for the FT viscosity model and PC-SAFT, improvement in liquid viscosity estimation can be achieved. The average absolute deviation percent (AAD%) is 10.22% for FT + PC-SAFT (this work), 13.71% for Lohrenz et al. and 23.48 for Pedersen et al. In addition, since the free-volume (FV) theory like FT belongs to semi-empirical viscosity models, a comparison with the FV model (published in the work of Khoshnamvand and Assareh in In J Thermophys 39:1, 2018) is performed. The results demonstrate that the FT viscosity model with presented characteristic parameters in this study gives a comparable accuracy in viscosity prediction for the studied real reservoir fluids. Compared to FV, the FT is less dependent on the EOS calculation which is an advantage of FT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A res :

Residual Helmholtz free energy

\({\tilde{a }}^{res}\) :

Reduced Residual Helmholtz free energy

\({\tilde{a }}^{hc}\) :

Hard chain contribution to reduced Helmholtz free energy

\({\tilde{a }}^{disp}\) :

Dispersion contribution to reduced Helmholtz free energy

\({AD\%}_{FT}= 100.\left|\frac{{\upmu }^{exp}-{\upmu }^{FT}}{{\upmu }^{exp}}\right|\) :

Absolute deviation percent of calculated viscosity by FT model

\({AD\%}_{LBC}= 100.\left|\frac{{\upmu }^{exp}-{\upmu }^{LBC}}{{\upmu }^{exp}}\right|\) :

Absolute deviation percent of calculated viscosity by LBC method

a 1 :

Characteristic parameter of FT viscosity model

a 2 :

Characteristic parameter of FT viscosity model

b 1 :

Characteristic parameter of FT viscosity model

b 2 :

Characteristic parameter of FT viscosity model

c 2 :

Characteristic parameter of FT viscosity model

a 10 :

Constant of FT viscosity model

a 11 :

Constant of FT viscosity model

a 20 :

Constant of FT viscosity model

a 21 :

Constant of FT viscosity model

b 10 :

Constant of FT viscosity model

b 11 :

Constant of FT viscosity model

b 20 :

Constant of FT viscosity model

b 21 :

Constant of FT viscosity model

c 20 :

Constant of FT viscosity model

c 21 :

Constant of FT viscosity model

P r :

Repulsive Pressure

P a :

Attractive Pressure

\({K}_{r}\) :

Temperature-dependent parameter of FT viscosity model

\({K}_{a}\) :

Temperature-dependent parameter of FT viscosity model

\({K}_{rr}\) :

Temperature-dependent parameter of FT viscosity model

\({K}_{r,mx}\) :

Mixture temperature-dependent parameter of FT viscosity model

\({K}_{a,mx}\) :

Mixture temperature-dependent parameter of FT viscosity model

\({K}_{rr,mx}\) :

Mixture temperature-dependent parameter of FT viscosity model

\({K}_{mx}\) :

Mixture temperature-dependent parameter of FT viscosity model

EOS :

Equation of state

\(OF\left(a\right)= \frac{1}{n}.\sum \left|\frac{{\upmu }^{exp}-{\upmu }^{calc}}{{\upmu }^{exp}}\right|\) :

Objective function for viscosity

VS :

Volume shift

k :

Boltzmann constant

MW :

Molecular weight

\(M\) :

Molecular weight

MW_plus fraction:

Molecular weight of plus fraction

m :

Segment length

N :

Avogadro number

N t :

Total mole in the cell

N L :

Liquid mole number in the cell

N G :

Gas mole number in the cell

Pc :

Critical pressure

Pbubble :

Bubble point pressure

R:

Universal gas constant

SP.GR:

Specific gravity

S_plus fraction:

Specific gravity of plus fraction

T:

Temperature [kelvin]

\({T}_{r}\) :

Reduced temperature

Tc :

Critical temperature

Vc :

Critical volume

V l :

Liquid volume

V g :

Gas volume

x:

Liquid composition

xi :

Mole fraction of species I

y :

Gas composition

Zhc :

Hard chain contribution of Compressibility factor

Zdisp :

Dispersion contribution of compressibility factor

Z g :

Gas compressibility factor

Z l :

Liquid compressibility factor

η:

Viscosity

\({\upeta }_{mx}\) :

Viscosity of mixture

\({\upeta }_{0}\) :

Dilute gas viscosity

\({\upeta }_{0,mx}\) :

Dilute gas viscosity of mixture

\(\Delta\upeta\) :

Dense state viscosity

\({\Delta\upeta }_{f,mx}\) :

Dense state viscosity of mixture

η:

Packing fraction density

References

  1. Y. Khoshnamvand, M. Assareh, Int. J. Thermophys 39, 1 (2018)

    Article  Google Scholar 

  2. J.H. Dymond, M.A. Awan, Int. J. Thermophys 10, 941–951 (1989)

    Article  ADS  Google Scholar 

  3. M.J. Assael, J.H. Dymond, M. Papadaki, P.M. Patterson, Fluid Ph. Equilibria 75, 245–255 (1992)

    Article  Google Scholar 

  4. A. Allal, M. Moha-Ouchane, C. Boned, Phys. Chem. Liq. 39, 1–30 (2001)

    Article  Google Scholar 

  5. S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby, Fluid Ph. Equilibria 169, 249–276 (2000)

    Article  Google Scholar 

  6. S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby, Fluid Ph. Equilibria 178, 1–16 (2001)

    Article  Google Scholar 

  7. S.E. Quiñones-Cisneros, U.K. Deiters, J. Phys. Chem 110, 12820–12834 (2006)

    Article  Google Scholar 

  8. A.S. de Wijn, V. Vesovic, G. Jackson, J.M. Trusler, J. Chem. Phys. 128, 204–214 (2008)

    Google Scholar 

  9. R. Srivastava, D.K. Dwivedee, K.N. Khanna, J. Mol. Liq. 139, 29–34 (2008)

    Article  Google Scholar 

  10. T. Goel, C.N. Patra, T. Mukherjee, C. Chakravarty, J. Chem. Phys. 129, 164–174 (2008)

    Google Scholar 

  11. G. Galliero, C. Boned, J. Fernández, J. Chem. Phys. 134, 64–74 (2011)

    Article  Google Scholar 

  12. L.T. Novak, Int. J. Chem. React 9, 1–20 (2011)

    Google Scholar 

  13. G. Galliéro, C. Boned, A. Baylaucq, Ind. Eng. Chem. Res. 44, 6963 (2005)

    Article  Google Scholar 

  14. G. Galliero, C. Boned, Phys. Rev 79, 102–120 (2009)

    Google Scholar 

  15. M.S. Zabaloy, J.M. Machado, E.A. Macedo, Int. J. Thermophys 22, 829–858 (2001)

    Article  Google Scholar 

  16. M.S. Zabaloy, V.R. Vasquez, E.A. Macedo, J Supercrit 36, 106–117 (2005)

    Article  Google Scholar 

  17. G. Soave, Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  Google Scholar 

  18. D.-Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fundam 15, 59–64 (1976)

    Article  Google Scholar 

  19. W.G. Chapman, K.E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29, 1709 (1990)

    Article  Google Scholar 

  20. W.G. Chapman, G. Jackson, K.E. Gubbins, Mol. Phys. 65, 1057–1079 (1988)

    Article  ADS  Google Scholar 

  21. S.H. Huang, M. Radosz, Ind. Eng. Chem. Res. 29, 2284 (1990)

    Article  Google Scholar 

  22. S.H. Huang, M. Radosz, Ind. Eng. Chem. Res. 30, 1994 (1991)

    Article  Google Scholar 

  23. J. Gross, G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001)

    Article  Google Scholar 

  24. C.K. Zéberg-Mikkelsen, S.E. Quiñones-Cisneros, E.H. Stenby, Ind. Eng. Chem. Res. 40, 3848 (2001)

    Article  Google Scholar 

  25. K.A.G. Schmidt, S.E. Quiñones-Cisneros, B. Kvamme, Energy Fuels 19, 1303–1313 (2005)

    Article  Google Scholar 

  26. C.K. Zéberg-Mikkelsen, S.E. Quiñones-Cisneros, E.H. Stenby, Pet Sci Technol 20, 27 (2002)

    Article  Google Scholar 

  27. S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby, Fluid Ph. Equilibria 212, 233 (2003)

    Article  Google Scholar 

  28. S. Quiñones-Cisneros, C. Zéberg-Mikkelsen, A. Baylaucq, C. Boned, Int. J. Thermophys 25, 1353–1366 (2004)

    Article  ADS  Google Scholar 

  29. C.K. Zéberg-Mikkelsen, S.E. Quiñones-Cisneros, E.H. Stenby, Fluid Ph. Equilibria 194, 1191 (2002)

    Article  Google Scholar 

  30. A.J. Queimada, S.E. Quinones-Cisneros, I.M. Marrucho, J.A.P. Coutinho, E.H. Stenby, Int. J. Thermophys 24, 1221 (2003)

    Article  Google Scholar 

  31. S.P. Tan, H. Adidharma, B.F. Towler, M. Radosz, Ind. Eng. Chem. Res. 44, 8409 (2005)

    Article  Google Scholar 

  32. S.P. Tan, H. Adidharma, B.F. Towler, M. Radosz, Ind. Eng. Chem. Res. 45, 2116 (2006)

    Article  Google Scholar 

  33. S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, J. Fernández, J. García, AIChE J. 52, 1600–1610 (2006)

    Article  Google Scholar 

  34. W.A. Burgess, D. Tapriyal, I.K. Gamwo, B.D. Morreale, M.A. McHugh, R.M. Enick, Ind. Eng. Chem. Res. 51, 16721 (2012)

    Article  Google Scholar 

  35. R. Macías-Salinas, Ind. Eng. Chem. Res. 57, 1109 (2018)

    Article  Google Scholar 

  36. M. Almasi, H. Nasim, J. Chem. Thermodyn 89, 1 (2015)

    Article  Google Scholar 

  37. M. Almasi, J. Therm. Anal. Calorim. 124, 399 (2016)

    Article  Google Scholar 

  38. M. Abutaqiya, J. Zhang, F.M. Vargas, Fuel 235, 113 (2019)

    Article  Google Scholar 

  39. Y. Khemka, M.I.L. Abutaqiya, W.G. Chapman, F.M. Vargas, Ind. Eng. Chem. Res. 59, 21994 (2020)

    Article  Google Scholar 

  40. R. Bagherinia, M. Assareh, F. Feyzi, Fluid Ph. Equilibria 425, 21–30 (2016)

    Article  Google Scholar 

  41. Y.H. Dehaghani, M. Assareh, F. Feyzi, Fluid Ph. Equilibria 1, 14 (2017)

    Google Scholar 

  42. J. Lohrenz, B.G. Bray, C.R. Clark, J. Pet. Technol. 231, 1117–1127 (1964)

    Google Scholar 

  43. K.S. Pedersen, A. Fredenslund, P.L. Christensen, P. Thomassen, Chem. Eng. Sci. 39, 1011–1016 (1984)

    Article  Google Scholar 

  44. M.R. Riazi, T.E. Daubert, Ind. Eng. Chem. Res. 26, 755–759 (1987)

  45. B.I.K. Lee, M.G. Kesler, AIChE J. 21, 510–527 (1975)

    Article  Google Scholar 

  46. C.H. Whitson, In Norwegian Institute of Technology (University of Trondheim, Department of Petroleum and Chemical Engineering, 1983)

    Google Scholar 

  47. X. Liang, W. Yan, K. Thomsen, G.M. Kontogeorgis, Fluid Ph. Equilibria 406, 147–155 (2015)

    Article  Google Scholar 

  48. X. Liang, W. Yan, K. Thomsen, G.M. Kontogeorgis, Fluid Ph. Equilibria 375, 254–268 (2014)

  49. I. Polishuk, Ind. Eng. Chem. Res. 53, 14127 (2014)

    Article  Google Scholar 

  50. M. Assareh, C. Ghotbi, M. Tavakkoli, G. Bashiri, Fluid Ph. Equilibria 408, 273–283 (2016)

    Article  Google Scholar 

  51. T.H. Chung, L.L. Lee, K.E. Starling, Ind. Eng. Chem. Fundam 23, 8–13 (1984)

  52. T.H. Chung, M. Ajlan, L.L. Lee, K.E. Starling, Ind. Eng. Chem. Res. 27, 671–679 (1988)

    Article  Google Scholar 

  53. C.R. Wilke, J. Chem. Phys. 18, 517–519 (1950)

    Article  ADS  Google Scholar 

  54. L. Zipperer, F. Herning, Das Gas-und Wasserfach 4, 49–59 (1936)

    Google Scholar 

  55. S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby, Fluid Phase Equilib. 169, 249 (2000)

    Article  Google Scholar 

Download references

Funding

No funding was received during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Assareh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper. This scientific manuscript has been extracted from a thesis. Younes Khoshnamvand is the graduated student. He has done the data gathering and model programming. Mehdi Assareh is the supervisors of the master thesis. He has proposed the modeling approach and supervised/helped its implementation. The corresponding author (Mehdi Assareh) is responsible for ensuring that the descriptions are accurate and agreed by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshnamvand, Y., Assareh, M. Application of Friction Theory and PC-SAFT for Estimation of Viscosity in Live Reservoir Fluid Systems. Int J Thermophys 43, 76 (2022). https://doi.org/10.1007/s10765-022-03004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-03004-1

Keywords

Navigation