Skip to main content
Log in

Measurement of Phase Transformation Temperatures in Shape Memory Alloys Using a Peltier Thermoelectric Apparatus

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Shape Memory Alloys (SMA) are advanced metallic materials with physical and mechanical properties intrinsically dependent on temperature. This temperature dependence means a great potential for the use of these functional materials as actuators and/or sensors in engineering applications. Therefore, the need to study SMA behavior as a function of temperature is critical for the development of thermomechanical actuators based on these materials. This work aims to present the development of a new thermoelectric apparatus to characterize the phase transformation temperatures and thermal hysteresis of SMA. The apparatus can vary the temperature of a standard SMA specimen through a controlled temperature program. A monitoring system registers and displays the Electrical Resistance Variation with Temperature (ERT) in real time. The main component of this device is a Peltier thermoelectric module, which performs the heating and cooling of the SMA sample. Thermal cycles between − 50 °C and 150 °C are achievable by employing a controlled heat transfer, through use of a fuzzy control system. Experimental tests were performed to validate the apparatus using Ni–Ti and Ni–Ti–Cu SMA samples. The results show that ERT behavior is compatible with literature, and the measured phase transformation temperatures are close to those determined by Differential Scanning Calorimetry. The uncertainty quantification of the ERT experiments, assessed by the Law of Uncertainty Propagation, indicates a low dispersion, below 7.60%, which delivers high precision and reliability to the measured phase transformation temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

SMA:

Shape memory alloy

ERT:

Electrical resistance variation with temperature

DSC:

Differential scanning calorimetry

DTA:

Differential thermal analysis

DMA:

Dynamic mechanical analysis

PTM:

Peltier thermoelectric module

LPU:

Law of propagation of uncertainties method

MEMS:

Micro-electro-mechanical systems

\({A}_{S}\) :

Start temperature of austenitic transformation (°C)

\({A}_{F}\) :

Finish temperature of austenitic transformation (°C)

\({M}_{S}\) :

Start temperature of martensitic transformation (°C)

\({M}_{F}\) :

Finish temperature of martensitic transformation (°C)

\({Q}_{a}\) :

Heat absorbed by the thermoelectric device on its cold side (W·m2)

\({Q}_{r}\) :

Heat rejected by the thermoelectric device on its hot side (W·m2)

\(I\) :

Electrical current (A)

\(V\) :

DC voltage (Volts)

\({ER}_{T}\) :

Difference between the reference and the measured temperatures (%)

\({\Delta ER}_{T}\) :

Rate change of error (%)

\(\Delta V\) :

Variation of input voltage (Volts)

\({T}_{ref}\) :

Reference temperature (°C)

\({Z}^{-1}\) :

Sampling time (s)

\({T}_{p}\) :

Temperature of the upper side of the Peltier Thermoelectric Module (°C)

\(L\) :

Sample dimension (mm)

\(W\) :

Sample dimension (mm)

\(S\) :

Sample dimension (mm)

\(T\) :

Temperature (°C)

\({t}_{r}\) :

Response time (s)

\({\rho }_{e}\) :

Electrical resistivity (Ω·s1)

\(u\) :

Combined uncertainty (%)

\(U\) :

Expanded uncertainty (%)

\(R\) :

Electrical resistance (Ω

References

  1. D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, Boston, MA, 2008)

    MATH  Google Scholar 

  2. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, Mater. Des. (2014). https://doi.org/10.1016/j.matdes.2013.11.084

    Article  Google Scholar 

  3. A.G. Oliveira, A.A. Silva, C.J. De Araújo, R. Senko, R.P.B. Dos Reis, J. Intell. Mater. Syst. Struct. (2020). https://doi.org/10.1177/1045389X20924829

    Article  Google Scholar 

  4. L.R.R. da Silva, W.F. Sales, F.A.R. Campos, J.A.G. de Sousa, R. Davis, A. Singh, R.T. Coelho, B. Borgohain, Prog. Addit. Manuf. (2021). https://doi.org/10.1007/s40964-021-00188-0

    Article  Google Scholar 

  5. E.F. de Souza, P.C.S. da Silva, E.N.D. Grassi, C.J. de Araújo, A.G.B. de Lima, Sensors (2021). https://doi.org/10.3390/s21217140

    Article  Google Scholar 

  6. R.P.B. Reis, P.C.S. Silva, R. Senko, A.A. Silva, C.J. de Araújo, Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2018.11.012

    Article  Google Scholar 

  7. J.M. Borges, A.A. Silva, C.J. de Araújo, R.L. Pimentel, A.S. de Aquino, R. Senko, R.P.B. dos Reis, J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/s40430-018-1175-8

    Article  Google Scholar 

  8. M.T. Braga, M.T.S. Alves, A.A. Cavalini-Jr, V. Steffen-Jr, Smart Mater. Struct. (2020). https://doi.org/10.1088/1361-665X/ab7112

    Article  Google Scholar 

  9. K. Otsuka, C.M. Wayman (eds.), Shape Memory Alloys (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  10. M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Prog Mater Sci (2012). https://doi.org/10.1016/j.pmatsci.2011.11.001

    Article  Google Scholar 

  11. E. Kaya, I. Kaya, Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-018-2818-8

    Article  Google Scholar 

  12. T. Birk, S. Biswas, J. Frenzel, G. Eggeler, Shap. Mem. Superelasticity (2016). https://doi.org/10.1007/s40830-016-0064-1

    Article  Google Scholar 

  13. G. Florian, A.R. Gabor, C.A. Nicolae, A. Rotaru, N. Stanica, N.G. Bizdoaca, P. Rotaru, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-019-08869-3

    Article  Google Scholar 

  14. O. Benafan, G.S. Bigelow, A. Garg, R.D. Noebe, D.J. Gaydosh, R.B. Rogers, Shap. Mem. Superelasticity (2021). https://doi.org/10.1007/s40830-020-00306-x

    Article  Google Scholar 

  15. J.R. Ferreira-Oliveira, P.C.S. da Silva, L.R.R. de Lucena, R.P.B. dos Reis, C.J. de Araújo, C.R. Bezerra-Filho, Int. J. Thermophys. (2021). https://doi.org/10.1007/s10765-021-02900-2

    Article  Google Scholar 

  16. D.E. Soto-Parra, H. Flores-Zúñiga, E.L. Cuéllar, R.A. Ochoa-Gamboa, D. Ríos-Jara, Mater. Res. (2014). https://doi.org/10.1590/1516-1439.265814

    Article  Google Scholar 

  17. S. Barbarino, E.I. Saavedra-Flores, R.M. Ajaj, I. Dayyani, M.I. Friswell, Smart Mater. Struct. (2014). https://doi.org/10.1088/0964-1726/23/6/063001

    Article  Google Scholar 

  18. V. Novák, P. Šittner, G.N. Dayananda, F.M. Braz-Fernandes, K.K. Mahesh, Mater. Sci. Eng. A (2008). https://doi.org/10.1016/j.msea.2007.02.162

    Article  Google Scholar 

  19. S. Miyazaki, Shap. Mem. Superelasticity (2017). https://doi.org/10.1007/s40830-017-0122-3

    Article  Google Scholar 

  20. N. Maraşlı, Ü. Bayram, Int. J. Thermophys. (2021). https://doi.org/10.1007/s10765-021-02845-6

    Article  Google Scholar 

  21. E. López-Cuéllar, G. Guénin, M. Morin, Mater. Sci. Eng. A (2003). https://doi.org/10.1016/S0921-5093(03)00328-9

    Article  Google Scholar 

  22. M.A. Savi, A. Paiva, C.J. de Araujo, A.S. de Paula, Shape memory alloys, in Dynamics of Smart Systems and Structures: Concepts and Applications. ed. by V. Lopes Junior, V. Steffen Jr., M.A. Savi (Springer International Publishing, Cham, 2016), pp. 155–188

    Chapter  Google Scholar 

  23. J.R. Taylor, An Introduction to Error Analysis (University Science Books, California, USA, 2011), p. 330

    Google Scholar 

  24. S. Al-Shehri, H.H. Saber, J. King Saud Univ. Eng. Sci. (2020). https://doi.org/10.1016/j.jksues.2019.03.009

    Article  Google Scholar 

  25. P. Wu, Z. He, M. Yang, J. Xu, N. Li, Z. Wang, J. Li, T. Ma, X. Lu, H. Zhang, T. Zhang, Int J Thermophys (2021). https://doi.org/10.1007/s10765-021-02860-7

    Article  Google Scholar 

  26. L. Henríquez-Vargas, A. Reyes, M. Quiroga, F. Angel, N. Pailahueque, P. Donoso-García, Heat Mass Transfer (2021). https://doi.org/10.1007/s00231-021-03019-8

    Article  Google Scholar 

  27. V. Guerra, J.R. Ticay-Rivas, V. Alonso-Eugenio, R. Perez-Jimenez, Sensors (2020). https://doi.org/10.3390/s20113288

    Article  Google Scholar 

  28. R.A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, S. Priya, Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-09707-8

    Article  Google Scholar 

  29. S. Lv, Z. Qian, D. Hu, X. Li, W. He, Energies (2020). https://doi.org/10.3390/en13123142

    Article  Google Scholar 

  30. Y. Lyu, A. Raihan, M. Siddique, S.A. Gadsden, S. Mahmud, Results Eng. (2021). https://doi.org/10.1016/j.rineng.2021.100214

    Article  Google Scholar 

  31. K. Venkatesan, M. Venkataramanan, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-2613-2

    Article  Google Scholar 

  32. D. González-Mendizabal, P. Bortot, A.L. López de Ramos, Int J Thermophys (1998). https://doi.org/10.1023/A:1022610330376

    Article  Google Scholar 

  33. Y. Cai, S.J. Mei, D. Liud, F.Y. Zhao, H.Q. Wang, Energy Convers. Manage (2018). https://doi.org/10.1016/j.enconman.2018.06.058

    Article  Google Scholar 

  34. M. Siahmargoi, N. Rahbar, H. Kargarsharifabad, S.E. Sadati, A. Asadi, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-56672-9

    Article  Google Scholar 

  35. A. Bhattacharyya, D.C. Lagoudas, Y. Wang, V.K. Kinra, Smart Mater. Struct. (1995). https://doi.org/10.1088/0964-1726/4/4/005

    Article  Google Scholar 

  36. P.L. Potapov, Mater. Sci. Eng. B (1998). https://doi.org/10.1016/s0921-5107(97)00276-6

    Article  Google Scholar 

  37. A. Bhattacharyya, D.C. Lagoudas, J. Phys. IV (1997). https://doi.org/10.1051/jp4:19975107

    Article  Google Scholar 

  38. Y. Luo, T. Takagi, S. Maruyama, M. Yamada, J. Intell. Mater. Syst. Struct. (2000). https://doi.org/10.1106/92YH-9YU9-HVW4-RVKT

    Article  Google Scholar 

  39. B. Selden, K.J. Cho, H.H. Asada, Proc. IEEE Int. Conf. Robot. Autom. (2004). https://doi.org/10.1109/robot.2004.1302499

    Article  Google Scholar 

  40. E. Sgambitterra, C. Maletta, F. Furgiuele, Shap. Mem. Superelast. (2015). https://doi.org/10.1007/s40830-015-0018-z

    Article  Google Scholar 

  41. V. Torra, F. Martorell, F.C. Lovey, M. Sade, Shap. Mem. Superelast. (2018). https://doi.org/10.1007/s40830-018-0178-8

    Article  Google Scholar 

  42. E. Sgambitterra, C. Maletta, P. Magarò, D. Renzo, F. Furgiuele, H. Sehitoglu, Shap. Mem. Superelast. (2019). https://doi.org/10.1007/s40830-019-00231-8

    Article  Google Scholar 

  43. Omega®, Handbook of Temperature Measurement: Thermocouple Sensors, Connectors, Wire, Surface Probes and Accessories, Omega®, United Kingdom, 2017.

  44. Z. Kovacic, S. Bogdan, Fuzzy Controller Design, 1st edn. (CRC Press, Boca Raton, 2005)

    MATH  Google Scholar 

  45. U.M. Nath, C. Dey, R.K. Mudi, Microsyst Technol (2019). https://doi.org/10.1007/s00542-019-04300-x

    Article  Google Scholar 

  46. M. Zangeneh, E. Aghajari, M. Forouzanfar, Int. J. Dynam. Control (2020). https://doi.org/10.1007/s40435-020-00622-1

    Article  Google Scholar 

  47. F.C. Carvalho, M.V.F. de Oliveira, F.A. Lara-Molina, A.A. Cavalini-Jr, V. Steffen-Jr, J Vib Control (2021). https://doi.org/10.1177/1077546320933734

    Article  Google Scholar 

  48. K. Ogata, Modern Control Engineering: International Edition, 5th edn. (Pearson, Upper Saddle River, NJ, 2008)

    Google Scholar 

  49. W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering: An Introduction, 9th edn. (Wiley, New York, 2013)

    Google Scholar 

  50. R.A. Matula, J. Phys. Chem. Ref. Data (1979). https://doi.org/10.1063/1.555614

    Article  Google Scholar 

  51. C.J. de Araújo, A.A.C. Gomes, J.A. Silva, A.J.T. Cavalcanti, R.P.B. Reis, C.H. Gonzalez, J. Mater. Process. Technol. (2009). https://doi.org/10.1016/j.jmatprotec.2008.08.025

    Article  Google Scholar 

  52. A.R. Pelton, G.H. Huang, P. Moine, R. Sinclair, Mater. Sci. Eng. A (2012). https://doi.org/10.1016/j.msea.2011.10.073

    Article  Google Scholar 

  53. S. Miyazaki, Eng. Asp. Shape Mem. Alloy. (1990). https://doi.org/10.1016/b978-0-7506-1009-4.50037-8

    Article  Google Scholar 

  54. C. Grossmann, J. Frenzel, V. Sampath, T. Depka, G. Eggeler, Met. Mater. Trans. A (2009). https://doi.org/10.1007/s11661-009-9958-2

    Article  Google Scholar 

  55. J.R. Ferreira-Oliveira, L.R.R. de Lucena, R.P.B. dos Reis, C.J. de Araújo, C.R. Bezerra-Filho, R.V. Arencibia, Int. J. Thermophys. (2020). https://doi.org/10.1007/s10765-020-02724-6

    Article  Google Scholar 

  56. J.R. Ferreira-Oliveira, L.R. de Lucena, R.P.B.D. Reis, C.J. de Araújo, C.R. Bezerra-Filho, Exp. Heat Transfer (2021). https://doi.org/10.1016/j.applthermaleng.2015.06.077

    Article  Google Scholar 

  57. J.A. Santos-Junior, J.R. Ferreira-Oliveira, J.G. do Nascimento, A.P. Fernandes, G. Guimarães, Int. J. Therm. Sci. (2022). https://doi.org/10.1016/j.ijthermalsci.2021.107304

    Article  Google Scholar 

  58. N.P. Ramos, L.F.S. Carollo, S.M.M. Lima E Silva, Meas. Sci. Technol (2020). https://doi.org/10.1088/1361-6501/ab8e6a

    Article  Google Scholar 

  59. Y. Lan, A.J. Minnich, G. Chen, Z. Ren, Adv. Funct. Mater. (2010). https://doi.org/10.1002/adfm.200901512

    Article  Google Scholar 

  60. O. Hahtela, M. Ruoho, E. Mykkänen, K. Ojasalo, J. Nissilä, A. Manninen, M. Heinonen, Int J Thermophys (2015). https://doi.org/10.1007/s10765-015-1970-8

    Article  Google Scholar 

  61. ASTM International, Designation: F 2004–05, Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis, pp. 5–8, 2005.

  62. T.W. Duerig, A.R. Pelton, K. Bhattacharya, Shap. Mem. Superelasticity (2017). https://doi.org/10.1007/s40830-017-0133-0

    Article  Google Scholar 

  63. H. Fang, M.B. Wong, Y. Bai, R. Luo, Constr. Build. Mater (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.081

    Article  Google Scholar 

  64. Z.G. Wang, X.T. Zu, Y. Huo, Thermochim. Acta (2005). https://doi.org/10.1016/j.tca.2005.06.028

    Article  Google Scholar 

  65. D.C. Montgomery, G.C. Runger, Applied Statistics and Probability for Engineers (Wiley, New York, 2011), p. 792

    MATH  Google Scholar 

  66. M.F. Cunha, J.M.B. Sobrinho, C.R. Souto, A.J.V. dos Santos, A.C. de Castro, A. Ries, N.L.D. Sarmento, Measurement (2019). https://doi.org/10.1016/j.measurement.2019.05.050

    Article  Google Scholar 

  67. E.N.D. Grassi, G. Chagnon, H.M.R. de Oliveira, D. Favier, Mech. Mater. (2020). https://doi.org/10.1016/j.mechmat.2020.103392

    Article  Google Scholar 

  68. M.M.S.F. Nascimento, C.J. de Araújo, J.S.R. Neto, A.M.N. de Lima, Mater. Res. (2006). https://doi.org/10.1590/S1516-14392006000100004

    Article  Google Scholar 

  69. M.J. Drexel, G.S. Selvaduray, A.R. Pelton, in Proceedings of the ASME 2007 2nd Frontiers in Biomedical Devices Conference, 2007. https://doi.org/10.1115/BioMed2007-38012.

  70. X. Liu, Y. Wang, D. Yang, M. Qi, Mater. Charact. (2008). https://doi.org/10.1016/j.matchar.2007.02.007

    Article  Google Scholar 

  71. N. Choudhary, D. Kaur, Sens Actuat A. (2016). https://doi.org/10.1016/j.sna.2016.02.026

    Article  Google Scholar 

  72. C.R. Knick, D.J. Sharar, A.A. Wilson, G.L. Smith, C.J. Morris, H.A. Bruck, J. Micromech. Microeng (2019). https://doi.org/10.1088/1361-6439/ab1633

    Article  Google Scholar 

  73. C.R. Knick, G.L. Smith, C.J. Morris, H.A. Bruck, J. Sens. Actuat. A (2019). https://doi.org/10.1016/j.sna.2019.03.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council for Scientific and Technological Development (CNPq) for sponsoring the research projects “Universal 2016” (Grant Number 401128/2016-4) and “PQ-1C” (Grant Number 302740/2018-0), the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for the post-doctoral scholarship (88887.355150/2019-00) granted to the author Estephanie Nobre Dantas Grassi, and the Research Support Foundation of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

RPBDR: Conceptualization, Methodology, Validation, Investigation, Software, Writing – original draft. JRFO: Formal analysis, Methodology, Writing – review and editing. ENDG: Methodology, Writing – review and editing. CDRS: Conceptualization, Methodology. CJDA: Conceptualization, Resources, Supervision.

Corresponding author

Correspondence to José Ricardo Ferreira-Oliveira.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis, R.P.B., Ferreira-Oliveira, J.R., Grassi, E.N.D. et al. Measurement of Phase Transformation Temperatures in Shape Memory Alloys Using a Peltier Thermoelectric Apparatus. Int J Thermophys 43, 50 (2022). https://doi.org/10.1007/s10765-022-02977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-022-02977-3

Keyword

Navigation