Skip to main content
Log in

Determination and Correlation of Solubilities of Benzoic Acid, Salicylic Acid, Resorcinol and Hydroquinone in Water and in 1-Octanol at Temperatures from 297.25 K to 334.45 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The solubilities of benzoic acid, salicylic acid, resorcinol and hydroquinone in water and in 1-octanol were measured by the dynamic method which is also called the synthetic method from 297.25 K to 334.45 K. Using differential scanning calorimetry (DSC Q2000 and SDT Q600), the melting temperature and the enthalpy of fusion of these solutes were determined. The obtained results show that the solubility of benzoic acid in water is greater than that of salicylic acid, but in the case of the two isomers of dihydroxybenzene, the solubility of resorcinol is approximately 100 times that of hydroquinone. In 1-octanol, the decreasing order of the solubility of these compounds is as follows: resorcinol > benzoic acid > salicylic acid > hydroquinone. The experimental solubilities were correlated using two regression equations. The correlation coefficient is greater than 0.9937 for one of these two equations for the binary studied systems where the solvent is either water or 1-octanol. New experimental data are provided for the solubility of resorcinol in water and salicylic acid, resorcinol, hydroquinone in 1-octanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C. M. S. de Mendonça, I. P. de Barros Lima, C. F. S. Aragão, A. P. B. Gomes, J. Therm. Anal. Calorim. 115, 2277–2285 (2014)

    Article  Google Scholar 

  2. A.-C. Huang, Y.-K. Chuang, C.-F. Huang, C.-M. Shu, J. Therm. Anal. Calorim. 132, 165–172 (2018)

    Article  Google Scholar 

  3. X. Li, Q. Yin, W. Chen, J. Wang, J. Chem. Eng. Data 51, 127–129 (2006)

    Article  Google Scholar 

  4. J. Lim, S. Jang, H. K. Cho, M. S. Shin, H. Kim, J. Chem. Thermodyn. 57, 295–300 (2013)

    Article  Google Scholar 

  5. R. F. Pires, M. R. Franco Jr, Fluid Phase Equilib. 330, 48–51 (2012)

    Article  Google Scholar 

  6. A. Shalmashi, A. Eliassi, J. Chem. Eng. Data 53, 199–200 (2008)

    Article  Google Scholar 

  7. N. Sunsandee, S. Suren, N. Leepipatpiboon, M. Hronec, U. Pancharoen, Fluid Phase Equilib. 338, 217–223 (2013)

    Article  Google Scholar 

  8. S. H. Ali, F. S. Al-Mutairi, M. A. Fahim, Fluid Phase Equilib. 230, 176–183 (2005)

    Article  Google Scholar 

  9. A. Apelblat, E. Manzurola, N. A. Balal, J. Chem. Thermodyn. 38, 565–571 (2006)

    Article  Google Scholar 

  10. K. Carlsson, B. Karlberg, Anal. Chim. Acta 423, 137–144 (2000)

    Article  Google Scholar 

  11. S.-T. Lin, S. I. Sandler, Ind. Eng. Chem. Res. 38, 4081–4091 (1999)

    Article  Google Scholar 

  12. J. Qingzhu, M. Peisheng, Y. Shouzhi, W. Qiang, W. Chang, L. Guiju, J. Chem. Eng. Data 53, 1278–1282 (2008)

    Article  Google Scholar 

  13. A. Van Haelst, P. Heesen, F. Van Der Wielen, H. Govers, Chemosphere 29, 1651–1660 (1994)

    Article  ADS  Google Scholar 

  14. W. J. Weber Jr, Y.-P. Chin, C. P. Rice, Water Res. 20, 1433–1442 (1986)

    Article  Google Scholar 

  15. G. Wienke, J. Gmehling, Toxicol. Environ. Chem. 65, 57–86 (1998)

    Article  Google Scholar 

  16. Y.-H. Zhang, Trends Analyt. Chem. 15, 188–196 (1996)

    Google Scholar 

  17. U. Domańska, Fluid Phase Equilib. 114, 175–188 (1996)

    Article  Google Scholar 

  18. I. Hahnenkamp, G. Graubner, J. Gmehling, Int. J. Pharm. 388, 73–81 (2010)

    Article  Google Scholar 

  19. H. Li, G. Hu, F. Guo, L. Zhao, J. Zhu, Y. Zhang, Can. J. Chem. Eng. 88, 161–164 (2010)

    Google Scholar 

  20. J. Delgado, Int. J. Heat Mass Transf. 43, 1311–1316 (2007)

    Article  Google Scholar 

  21. J. Qing-Zhu, M. Pei-Sheng, Z. Huan, X. Shu-Qian, W. Qiang, Q. Yan, Fluid Phase Equilib. 250, 165–172 (2006)

    Article  Google Scholar 

  22. F. L. Mota, A. J. Queimada, A. E. Andreatta, S. P. Pinho, E. A. Macedo, Fluid Phase Equilib. 322, 48–55 (2012)

    Article  Google Scholar 

  23. K. Tamura, T. Kasuga, T. Nakagawa, Fluid Phase Equilib. 420, 24–29 (2016)

    Article  Google Scholar 

  24. W. E. Acree Jr, Thermochim Acta 189, 37–56 (1991)

    Article  Google Scholar 

  25. F. L. Nordström, Å. C. Rasmuson, J. Chem. Eng. Data 51, 1668–1671 (2006)

    Article  Google Scholar 

  26. C. L. Yaws, S.-C. Lin, Enthalpy of fusion at freezing point—Organic compounds, in Thermophysical Properties of Chemicals and Hydrocarbons, William Andrew Publishing (Elsevier, 2009), pp. 552–591

  27. Z. Esina, M. Korchuganova, Theor. Found. Chem. Eng. 49, 313–321 (2015)

    Article  Google Scholar 

Download references

Funding

This study was funded by Ministère de l'Enseignement Supérieur et de la Recherche Scientifique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boucif Belhachemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhachemi, B., Makhlouf, H. & Belhachemi, M.H. Determination and Correlation of Solubilities of Benzoic Acid, Salicylic Acid, Resorcinol and Hydroquinone in Water and in 1-Octanol at Temperatures from 297.25 K to 334.45 K. Int J Thermophys 42, 1 (2021). https://doi.org/10.1007/s10765-020-02750-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02750-4

Keywords

Navigation