Skip to main content
Log in

Evaluation of Thermal Contact Resistance Between Two Solid Surfaces Using Photoacoustic Technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal contact resistance is one of the factors that complicates heat transfer between the interfaces of different components. Because heat transfer is influenced by several factors, it is difficult to estimate all the influencing factors for practical applications. In this study, the thermal contact resistance between two solid surfaces was evaluated using the photoacoustic (PA) technique. The samples consisted of a metal foil and metal cylinders, which had various surface roughnesses at the contact faces measured at the same contact pressure. A one-dimensional analytical solution of the phase lag of the PA signal showed a similar trend with the experimental results. However, there were some quantitative differences between the two groups. By comparing the numerical calculation results for the developed heat conduction model of a cylindrical coordinate system with the experimental results, we found that the in-plane distribution of thermal contact resistance at the contact face contributed to the deviation between the experimental results and the numerical results. The thermal contact resistance was evaluated by considering the in-plane distribution of the thermal contact resistance, and reasonable values of thermal contact resistance were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.G. Cooper, B.B. Mikic, M.M. Yovanovich, Int. J. Heat Mass Transf. 12, 279 (1969)

    Article  Google Scholar 

  2. K. Nishino, S. Yamashita, K. Torii, Exp. Thermal Fluid Sci. 10, 258 (1995)

    Article  Google Scholar 

  3. M.R. Sridhar, M.M. Yovanovich, Int. J. Heat Mass Transf. 39, 831 (1996)

    Article  Google Scholar 

  4. X. Zhang, P.Z. Cong, S. Fujiwara, M. Fujii, Int. J. Heat Mass Transf. 47, 1091 (2004)

    Article  Google Scholar 

  5. X. Zhang, P.Z. Cong, M. Fujii, Int. J. Thermophys. 27, 880 (2006)

    Article  ADS  Google Scholar 

  6. T. Tomimura, JSME Int. J. Ser. B Fluids Therm. Eng. 47, 447 (2004)

    Article  ADS  Google Scholar 

  7. ASTM International, ASTM D5470-06 (ASTM International, West Conshohocken, 2006)

    Google Scholar 

  8. B. Sponagle, D. Groulx, Appl. Therm. Eng. 96, 671 (2016)

    Article  Google Scholar 

  9. C. Fieberg, R. Kneer, Int. J. Heat Mass Transf. 51, 1017 (2008)

    Article  Google Scholar 

  10. W.J. Parker, R.J. Jenkins, C.P. Butler, G.L. Abbott, J. Appl. Phys. 32, 1679 (1961)

    Article  ADS  Google Scholar 

  11. N.D. Milošević, M. Raynaud, K.D. Maglić, Int. J. Thermophys. 24, 799 (2003)

    Article  Google Scholar 

  12. N.D. Miloševic, Int. J. Thermophys. 29, 2072 (2008)

    Article  ADS  Google Scholar 

  13. B. Dongmei, C. Huanxin, L. Shanjian, S. Limei, Appl. Therm. Eng. 111, 768 (2017)

    Article  Google Scholar 

  14. B.-C. Li, S.-Y. Zhang, J. Phys. D Appl. Phys. 30, 1447 (1997)

    Article  ADS  Google Scholar 

  15. H. Hu, X. Wang, X. Xu, J. Appl. Phys. 86, 3953 (1999)

    Article  ADS  Google Scholar 

  16. J.L. Pichardo, J.J. Alvarado-Gil, J. Appl. Phys. 89, 4070 (2001)

    Article  ADS  Google Scholar 

  17. K. Kagata, T. Yamada, A. Yoshida, Trans. JSME (2015). https://doi.org/10.1299/transjsme.14-00435

    Article  Google Scholar 

  18. A. Rosencwaig, A. Gersho, J. Applied Physics 47, 64 (1976)

    Article  ADS  Google Scholar 

  19. The Japan Society of Mechanical Engineers, JSME Data Book: Heat Transfer, 5th Edition, 288 (2009)

  20. Japan Society of Thermophysical Properties, Thermophysical Properties Handbook, 20 (2008)

  21. A. Yoshida, Y. Omae, T. Kurita, S. Washio, Int. J. Thermophys. 21, 513 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the late Dr. Tetsuya Yamada for the meaningful discussions regarding this study. It is noted that this study was partially supported by the JSPS Grant-in-Aid for Scientific Research (17H00802, representative: Atsumasa Yoshida).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakeru Kagata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

A cylindrical coordinate system, as shown in Fig. 3, is introduced, and a numerical calculation is performed using the axisymmetric thermal conduction equation:

$$\rho C_{p} \frac{\partial T}{\partial t} = \frac{\partial }{\partial x}\left( {k\frac{\partial T}{\partial x}} \right) + \frac{1}{r}\frac{\partial }{\partial r}\left( {rk\frac{\partial T}{\partial r}} \right) + S_{C} .$$
(A1)

The equation for the thermal flux that passes through the contact surface is expressed as follows:

$$q = \frac{{2\left( {\frac{{k_{1} }}{{\Delta x_{1} }}} \right)\left( {\frac{{k_{2} }}{{\Delta x_{2} }}} \right)\left( {T_{1} - T_{2} } \right)}}{{2R\left( {\frac{{k_{1} }}{{\Delta x_{1} }}} \right)\left( {\frac{{k_{2} }}{{\Delta x_{2} }}} \right) + \left( {\frac{{k_{1} }}{{\Delta x_{1} }}} \right) + \left( {\frac{{k_{2} }}{{\Delta x_{2} }}} \right)}}.$$
(A2)

When Eq. A2 is substituted into the numerical calculation equation, Eq. A3 is obtained, differentiated, and transformed. Figure 14 shows the arrangement of the grids containing the boundary surface.

$$A_{S,ij} T_{ij - 1}^{n + 1} + A_{W,ij} T_{i - 1j}^{n + 1} + A_{p,ij} T_{ij}^{n + 1} + A_{E,ij} T_{i + 1j}^{n + 1} + A_{N,ij} T_{ij + 1}^{n + 1} = B_{ij} .$$
(A3)
Fig. 14
figure 14

Grid arrangement and thermal flux between grids close to the boundary surface

The terms in Eq. A3 are defined as follows:

$$A_{w,ij} = q_{i - 1,i} \Delta r_{j} r_{j} = - \frac{{2\left( {\frac{{k_{i - 1j} }}{{\Delta x_{i - 1} }}} \right)\left( {\frac{{k_{ij} }}{{\Delta x_{i} }}} \right)}}{{\left( {\frac{{k_{i - 1j} }}{{\Delta x_{i - 1} }}} \right) + \left( {\frac{{k_{ij} }}{{\Delta x_{i} }}} \right)}}\Delta r_{j} r_{j} ,$$
(A4)
$$A_{E,ij} = q_{i,i + 1} \Delta r_{j} r_{j} = - \frac{{2\left( {\frac{{k_{ij} }}{{\Delta x_{i} }}} \right)\left( {\frac{{k_{i + 1j} }}{{\Delta x_{i + 1} }}} \right)}}{{2R\left( {\frac{{k_{i + 1j} k_{ij} }}{{\Delta x_{i + 1} \Delta x_{i} }}} \right) + \left( {\frac{{k_{ij} }}{{\Delta x_{i} }}} \right) + \left( {\frac{{k_{i + 1j} }}{{\Delta x_{i + 1} }}} \right)}}\Delta r_{j} r_{j} ,$$
(A5)
$$A_{S,ij} = \left( {r_{j} - \frac{1}{2}\Delta r_{j} } \right)q_{j - 1,j} \Delta x = \left( {r_{j} - \frac{1}{2}\Delta r_{j} } \right)\frac{{2\left( {\frac{{k_{ij - 1} }}{{\Delta r_{j - 1} }}} \right)\left( {\frac{{k_{ij} }}{{\Delta r_{j} }}} \right)}}{{\left( {\frac{{k_{ij - 1} }}{{\Delta r_{j - 1} }}} \right) + \left( {\frac{{k_{ij} }}{{\Delta r_{j} }}} \right)}}\Delta x,$$
(A6)
$$A_{N,ij} = - \left( {r_{j} + \frac{1}{2}\Delta r_{j} } \right)q_{j,j + 1} \Delta x = - \left( {r_{j} + \frac{1}{2}\Delta r_{j} } \right)\frac{{2\left( {\frac{{k_{ij} }}{{\Delta r_{j} }}} \right)\left( {\frac{{k_{ij + 1} }}{{\Delta r_{j + 1} }}} \right)}}{{\left( {\frac{{k_{ij} }}{{\Delta r_{j} }}} \right) + \left( {\frac{{k_{ij + 1} }}{{\Delta r_{j + 1} }}} \right)}}\Delta x,$$
(A7)
$$A_{p,ij} = - \left( {A_{E,ij} + A_{W,ij} + A_{S,ij} + A_{N,ij} } \right) + \frac{{\rho C_{p} r_{j} \Delta r_{j} \Delta x_{i} }}{\Delta t},$$
(A8)
$$B_{ij} = r_{j} \Delta r_{j} \Delta x_{i} S_{c,ij} + \frac{{\rho C_{p} r_{j} \Delta r_{j} \Delta x_{i}^{{}} }}{\Delta t}T_{ij}^{n} .$$
(A9)

It is possible to perform the calculation considering the contact thermal resistance by solving the equations above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagata, K., Kageyama, K., Kinoshita, S. et al. Evaluation of Thermal Contact Resistance Between Two Solid Surfaces Using Photoacoustic Technique. Int J Thermophys 41, 131 (2020). https://doi.org/10.1007/s10765-020-02717-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02717-5

Keywords

Navigation