Skip to main content

Advertisement

Log in

Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed “beamlets,” which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask’s steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet’s spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Hebling, K.-L. Yeh, M. C. Hoffmann, and K. A. Nelson, High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy, IEEE J. Sel. Top. Quantum Electron., vol. 14, pp. 345–353, 2008.

    Article  Google Scholar 

  2. M. C Hoffmann and J. A. Fülöp, Intense ultrashort terahertz pulses: generation and applications, J. Phys. D: Appl. Phys. vol. 44, p. 083001, 2011.

    Article  Google Scholar 

  3. T. Kampfrath, K. Tanaka, and K. A. Nelson, Resonant and nonresonant control over matter and light by intense terahertz transients, Nat. Photonics, vol. 7, pp. 680–690, 2013.

  4. H. Hirori, M. Nagai, and K. Tanaka, Excitonic interactions with intense terahertz pulses in ZnSe/ZnMgSSe multiple quantum wells, Phys. Rev. B., vol. 81, p. 081305, 2010.

    Article  Google Scholar 

  5. L. Pálfalvi, J. A. Fülöp, Gy. Tóth, and J. Hebling, Evanescent-wave proton post accelerator driven by intense THz pulse, Phys. Rev. ST Accel. Beams., vol. 17, p. 031301, 2014.

    Article  Google Scholar 

  6. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, Terahertz-driven linear electron acceleration, Nat. Commun., vol. 6, p. 8486, 2015.

    Article  Google Scholar 

  7. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser, Opt. Lett. vol. 39, pp. 6632–6635, 2014.

    Article  Google Scholar 

  8. G. Polónyi, B. Monoszlai, G. Gäumann, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp, High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge, Opt. Express, vol. 24, pp. 23872–23882, 2016.

    Article  Google Scholar 

  9. C. Zhang, Y. Avestisyan, G. Abgaryan, I. Kawayama, H. Murakami, and M. Tonouchi, Tunable narrowband terahertz generation in lithium niobate crystals using a binary phase mask, Opt. Lett., vol. 38, pp. 953–955, 2013.

    Article  Google Scholar 

  10. J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, Velocity matching by pulse front tilting for large-area THz-pulse generation, Opt. Lett., vol. 10, pp. 1161–1166, 2002.

    Google Scholar 

  11. K-L Yeh, M C Hoffmann, J Hebling, K A Nelson, Generation of 10 μJ ultrashort THz pulses by optical rectification, Appl. Phys. Lett., vol. 90, 171121, 2007.

    Article  Google Scholar 

  12. H Hirori, A Doi, F Blanchard, K Tanaka. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3, Appl. Phys. Lett. vol. 98, 091106, 2011.

    Article  Google Scholar 

  13. M. Nagai, E. Matsubara, and M. Ashida, High-efficiency terahertz pulse generation via optical rectification by suppressing stimulated Raman scattering process, Opt. Express, vol. 20, pp. 6509–6514, 2012.

    Article  Google Scholar 

  14. X. Wu, A.-L. Calandron, K. Ravi, C. Zhou, M. Hemmer, F. Reichert, D. Zhang, H. Cancaya, L. Zapata, N. Matlis, and F. Kartner, Optical generation of single-cycle 10 MW peak power 100 GHz waves, Opt. Express, vol. 24, pp. 21059–21069, 2016.

    Article  Google Scholar 

  15. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, Efficient generation of THz pulses with 0.4 mJ energy, Opt. Express, vol. 22, pp. 20155–20163, 2014.

    Article  Google Scholar 

  16. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate, Opt. Lett., vol. 38, pp. 796–798, 2013.

    Article  Google Scholar 

  17. K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. X. Kärtner, Limitations to THz generation by optical rectification using tilted pulse fronts, Opt. Express, vol. 22, pp. 20239–20251, 2014.

    Article  Google Scholar 

  18. F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilli Joule pump energies, Opt. Lett., vol. 39, pp. 4333–4336, 2014.

    Article  Google Scholar 

  19. B. Ofori-Okai, P. Sivarajah, W. Huang, and K. Nelson, THz generation using a reflective stair-step echelon, Opt. Express, vol. 24, pp. 5057–5068, 2016.

    Article  Google Scholar 

  20. S. Zhong, Ju. Li, Z. Zhai, L. Zhu, Ji. Li, P. Zhou, J. Zhao, and Ze. Li, Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser, Opt. Express, vol. 24, pp. 14828–14835, 2016.

    Article  Google Scholar 

  21. L. Palfalvi, J. A. Fülöp, G. Almasi, and J. Hebling, Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification, Appl. Phys. Lett., vol. 92, p. 171107, 2008.

    Article  Google Scholar 

  22. F. Yoshida, K. Nagashima, M. Tsubouchi, M. Maruyama, and Y. Ochi, THz pulse generation using a contact grating device composed of TiO2/SiO2 thin films on LiNbO3 crystal, J. Appl. Phys., vol. 120, p. 183103, 2016.

    Article  Google Scholar 

  23. J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, Highly efficient scalable monolithic semiconductor terahertz pulse source, Optica, vol. 3, pp. 1075–1078, 2016.

    Article  Google Scholar 

  24. G. Abgaryan, A. Makaryan, V. Tadevosyan, and Y. Avetisyan, Broadband THz generation in lithium niobate crystal by step-wise phase mask, in Proceedings of Microwave and THz Technique and Applications (“Gitutiun” Publishing House of the NAS RA Yerevan 2015), pp. 13–16. http://irphe.asjoa.am/85/5/IRPhE2014_Proceedings.pdf.

  25. Y. Avetisyan, M. Tonouchi, Terahertz generation in QPM structure formed by a phase mask, Opt. Lett., vol. 37, pp. 4155–4157, 2012.

    Article  Google Scholar 

  26. J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 1: Theory, Appl. Phys. B., vol. 86, pp. 185–196, 2007.

    Article  Google Scholar 

  27. K. L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs, Laser & Photon. Rev., vol. 2, pp. 11–25, 2008.

    Article  Google Scholar 

  28. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron., vol. 28, pp. 2631–2654, 1992.

    Article  Google Scholar 

  29. Y. Avestisyan, C. Zhang, I. Kawayama, H. Murakami, T. Somekawa, H. Chosrowjan, M. Fujita, and M. Tonouchi, Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask, Opt. Express, vol. 20, pp. 25752–25757, 2012.

    Article  Google Scholar 

  30. Y. Jiang, D. Li, Y. J. Ding, and I. B. Zotova, Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion, Opt. Lett., vol. 36, pp. 1608–1610, 2011.

    Article  Google Scholar 

  31. D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, 16-μm infrared generation by difference frequency mixing in diffusion-bonded-stacked GaAs, Opt. Lett., vol. 23, pp. 1010–1012, 1998.

    Article  Google Scholar 

  32. T. Kubota, H. Atarashi, and I. Shoji, Fabrication of quasi-phase-matching stack of GaAs plates using a new technique: room-temperature bonding, in Advanced Solid-State Lasers, OSA Technical Digest Series (online) (Optical Society of America, 2016), paper ATu5A.6. https://www.osapublishing.org/abstract.cfm?uri=ASSL-2016-ATu5A.6.

  33. O. Gayer, Z. Sacks, E. Galun, and A. Arie, Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3, Appl. Phys. B., vol. 91, pp. 343–348, 2008.

    Article  Google Scholar 

  34. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range, J. Appl. Phys., vol. 97, p. 123505, 2005.

    Article  Google Scholar 

  35. D. T. F. Marple, Refractive index of ZnSe, ZnTe, and CdTe, J. Appl. Phys., vol. 35, pp. 539–541, 1964.

    Article  Google Scholar 

  36. S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako and N. Hiromot, Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy, Jap. J. Appl. Phys., vol. 52, p. 042401, 2013.

    Article  Google Scholar 

  37. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Design of high-energy terahertz sources based on optical rectification, Opt. Express, vol. 18, pp. 12311–12327, 2010.

    Article  Google Scholar 

  38. M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, Efficient terahertz generation by optical rectification at 1035 nm, Opt. Express, vol. 15, pp. 11706–11713, 2007.

    Article  Google Scholar 

  39. Y. Avetisyan, C. Zhang, and M. Tonouchi, Analysis of linewidth tunable terahertz wave generation in periodically poled lithium niobate, J. Infrared Milli. Terahz Waves, vol. 33, pp. 989–998, 2012.

    Article  Google Scholar 

  40. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling & L. Pálfalvi, Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range, J. Infrared Milli Terahz Waves, vol. 36, pp. 1203–1209, 2015.

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by State Committee of Science of Armenia (15T-6B245). The help of Dr. H. Chosrowjan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Avetisyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avetisyan, Y., Makaryan, A., Tadevosyan, V. et al. Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification. J Infrared Milli Terahz Waves 38, 1439–1447 (2017). https://doi.org/10.1007/s10762-017-0429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0429-3

Keywords

Navigation