Skip to main content

Advertisement

Log in

STAT3-Mediated Ferroptosis is Involved in Sepsis-Associated Acute Respiratory Distress Syndrome

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis-induced acute respiratory distress syndrome (ARDS) poses a grave danger to life, resulting from sepsis-induced multi-organ failure. Although ferroptosis, a form of iron-dependent lipid peroxidative cell death, has been associated with sepsis-induced ARDS, the specific mechanisms are not fully understood. In this study, we utilized WGCNA, PPI, friends analysis, and six machine learning techniques (Lasso, SVM, RFB, XGBoost, AdaBoost, and LightGBM) to pinpoint STAT3 as a potential diagnostic marker. A significant increase in monocyte and neutrophil levels was observed in patients with sepsis-induced ARDS, as revealed by immune infiltration analyses, when compared to controls. Moreover, there was a positive correlation between STAT3 expression and the level of infiltration. Single-cell analysis uncovered a notable disparity in B-cell expression between sepsis and sepsis-induced ARDS. Furthermore, in vitro experiments using LPS-treated human bronchial epithelial cells (BEAS-2B) and THP1 cells demonstrated a significant increase in STAT3 phosphorylation expression. Additionally, the inhibition of STAT3 phosphorylation by Stattic effectively prevented LPS-induced ferroptosis in both BEAS-2B and THP1 cells. This indicates that the activation of STAT3 phosphorylation promotes ferroptosis in human bronchial epithelial cells in response to LPS. In summary, this research has discovered and confirmed STAT3 as a potential biomarker for the diagnosis and treatment of sepsis-induced ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, et al. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Journal of the American Medical Association 315: 801–810.

    Article  CAS  PubMed  Google Scholar 

  2. Fleischmann-Struzek, C., L. Mellhammar, N. Rose, A. Cassini, K.E. Rudd, P. Schlattmann, et al. 2020. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Medicine 46: 1552–1562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou, J., C. Qian, M. Zhao, X. Yu, Y. Kang, X. Ma, et al. 2014. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PLoS ONE 9: e107181.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khwannimit, B., and R. Bhurayanontachai. 2009. The epidemiology of, and risk factors for, mortality from severe sepsis and septic shock in a tertiary-care university hospital setting. Epidemiology and Infection 137: 1333–1341.

    Article  CAS  PubMed  Google Scholar 

  5. Xie, J., H. Wang, Y. Kang, L. Zhou, Z. Liu, B. Qin, et al. 2020. The Epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey. Critical Care Medicine 48: e209–e218.

    Article  PubMed  Google Scholar 

  6. Bernard, G.R., A. Artigas, K.L. Brigham, J. Carlet, K. Falke, L. Hudson, et al. 1994. Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical trial coordination The Consensus Committee. Intensive Care Medicine 20: 225–232.

    Article  CAS  PubMed  Google Scholar 

  7. Meyer, N.J., L. Gattinoni, and C.S. Calfee. 2021. Acute respiratory distress syndrome. The Lancet 398: 622–637.

    Article  CAS  Google Scholar 

  8. Thompson, B.T., R.C. Chambers, and K.D. Liu. 2017. Acute respiratory distress syndrome. The New England Journal of Medicine 377: 562–572.

    Article  CAS  PubMed  Google Scholar 

  9. Englert, J.A., C. Bobba, and R.M. Baron. 2019. Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCI Insight 4: e124061.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, et al. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. Journal of the American Medical Association 315: 788–800.

    Article  CAS  PubMed  Google Scholar 

  11. Tang, D., X. Chen, R. Kang, and G. Kroemer. 2021. Ferroptosis: molecular mechanisms and health implications. Cell Research 31: 107–125.

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, X., B.R. Stockwell, and M. Conrad. 2021. Ferroptosis: mechanisms, biology and role in disease. Nature Reviews. Molecular Cell Biology 22: 266–282.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lei, X.L., G.Y. Zhao, R. Guo, and N. Cui. 2022. Ferroptosis in sepsis: the mechanism, the role and the therapeutic potential. Frontiers In Immunology 13: 956361.

    Article  CAS  Google Scholar 

  14. Dar, H.H., Y.Y. Tyurina, K. Mikulska-Ruminska, I. Shrivastava, H.-C. Ting, V.A. Tyurin, et al. 2018. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. The Journal of Clinical Investigation 128: 4639–4653.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Amaral, E.P., D.L. Costa, S. Namasivayam, N. Riteau, O. Kamenyeva, L. Mittereder, et al. 2019. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. The Journal of Experimental Medicine 216: 556–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, P., Y. Feng, H. Li, X. Chen, G. Wang, S. Xu, et al. 2020. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cellular & Molecular Biology Letters 25: 10.

    Article  CAS  Google Scholar 

  17. Li, Y., Y. Cao, J. Xiao, J. Shang, Q. Tan, F. Ping, et al. 2020. Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death and Differentiation 27: 2635–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barrett, T., S.E. Wilhite, P. Ledoux, C. Evangelista, I.F. Kim, M. Tomashevsky, K.A. Marshall, K.H. Phillippy, P.M. Sherman, M. Holko, and A. Yefanov. 2012. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Research 41: D991–D995.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choe, E.K., S. Lee, S.Y. Kim, M. Shivakumar, K.J. Park, Y.J. Chai, and D. Kim. 2021. Prognostic effect of inflammatory genes on Stage I-III colorectal cancer—Integrative analysis of TCGA data. Cancers 13 (4): 751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wei, Y., L. Gao, X. Yang, X. Xiang, and C. Yi. 2022. Inflammation-related genes serve as prognostic biomarkers and involve in immunosuppressive microenvironment to promote gastric cancer progression. Frontiers in Medicine 9: 801647.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou, N., X. Yuan, Q. Du, Z. Zhang, X. Shi, J. Bao, et al. 2023. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. Nucleic Acids Research 51: D571–D582.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, N., X. Yuan, Q. Du, Z. Zhang, X. Shi, J. Bao, et al. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43: e47.

    Article  Google Scholar 

  23. Chen, G., N. Han, G. Li, X. Li, G. Li, Z. Li, et al. 2016. Time course analysis based on gene expression profile and identification of target molecules for colorectal cancer. Cancer Cell International 16: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wu, T., E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, et al. 2021. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. The Innovation 2: 100141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang, K., A.R. Dinasarapu, E.S. Reis, R.A. DeAngelis, D. Ricklin, S. Subramaniam, et al. 2013. CMAP: complement map database. Bioinformatics 29: 1832–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Langfelder, P., and S. Horvath. 2008. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Szklarczyk, D., R. Kirsch, M. Koutrouli, K. Nastou, F. Mehryary, R. Hachilif, et al. 2023. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51: D638–D646.

    Article  CAS  PubMed  Google Scholar 

  28. Yang, K., A.R. Dinasarapu, E.S. Reis, R.A. DeAngelis, D. Ricklin, S. Subramaniam, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13: 2498–2504.

    Article  Google Scholar 

  29. Engebretsen, S., and J. Bohlin. 2019. Statistical predictions with glmnet. Clinical Epigenetics 11: 123.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deist, T.M., F.J. Dankers, G. Valdes, R. Wijsman, I.C. Hsu, C. Oberije, et al. 2018. Machine learning algorithms for outcome prediction in (chemo) radiotherapy: an empirical comparison of classifiers. Medical Physics 45: 3449–3459.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Robin, X., N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.C. Sanchez, et al. 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Newman, A.M., C.L. Liu, M.R. Green, A.J. Gentles, W. Feng, Y. Xu, et al. 2015. Robust enumeration of cell subsets from tissue expression profiles. Nature Methods 12: 453–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akiyoshi, T., Z. Wang, T. Kaneyasu, O. Gotoh, N. Tanaka, S. Amino, et al. 2023. Transcriptomic analyses of pretreatment tumor biopsy samples, response to neoadjuvant chemoradiotherapy, and survival in patients with advanced rectal cancer. JAMA Network Open 6: e2252140.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stuart, T., A. Srivastava, S. Madad, C.A. Lareau, and R. Satija. 2021. Single-cell chromatin state analysis with Signac. Nature Methods 18: 1333–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Becht, E., L. McInnes, J. Healy, C.-A. Dutertre, I.W.H. Kwok, L.G. Ng, et al. 2019. Dimensionality reduction for visualizing single-cell data using UMAP. Nature Biotechnology 37: 38–44.

    Article  CAS  Google Scholar 

  36. Gotts, J.E., and M.A. Matthay. 2016. Sepsis: pathophysiology and clinical management. British Medical Journal 353: i1585.

    Article  PubMed  Google Scholar 

  37. Jiao, Y., C. Yong, R. Zhang, D. Qi, and D. Wang. 2022. Hepcidin alleviates LPS-induced ARDS by regulating the ferritin-mediated suppression of ferroptosis. Shock: Injury, Inflammation, and Sepsis: Laboratory and Clinical Approaches 57: 274–281.

    CAS  Google Scholar 

  38. Wang, Y.-M., F.-C. Gong, X. Qi, Y.-J. Zheng, X.-T. Zheng, Y. Chen, et al. 2022. Mucin 1 inhibits ferroptosis and sensitizes vitamin E to alleviate sepsis-induced acute lung injury through GSK3β/Keap1-Nrf2-GPX4 pathway. Oxidative Medicine and Cellular Longevity 2022: 1–29.

    Google Scholar 

  39. Wang, X., C. Zhang, N. Zou, Q. Chen, C. Wang, X. Zhou, et al. 2022. Lipocalin-2 silencing suppresses inflammation and oxidative stress of acute respiratory distress syndrome by ferroptosis via inhibition of MAPK/ERK pathway in neonatal mice. Bioengineered 13: 508–520.

    Article  PubMed  Google Scholar 

  40. Kalil, A.C., and P.G. Thomas. 2019. Influenza virus-related critical illness: pathophysiology and epidemiology. Critical Care 23: 258.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang, K.Y., J.J. Arcaroli, and E. Abraham. 2003. Early alterations in neutrophil activation are associated with outcome in acute lung injury. American Journal of Respiratory and Critical Care Medicine 167: 1567–1574.

    Article  PubMed  Google Scholar 

  42. Klintman, D., G. Hedlund, and H. Thorlacius. 2002. Protective effect of linomide on TNF-alpha-induced hepatic injury. Journal of Hepatology 36: 226–232.

    Article  CAS  PubMed  Google Scholar 

  43. Ohsuga, Y., J.M. Rowe, J. Liesveld, R.P. Burns, and A.A. Gaspari. 2000. Dermatologic changes associated with roquinimex immunotherapy after autologous bone marrow transplant. Journal of the American Academy of Dermatology 43: 437–441.

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Q., Y. Wang, M.X. Wan, X.W. Zhang, G. Andersson, G. Hedlund, et al. 2003. Roquinimex inhibits dextran sodium sulfate-induced murine colitis. Inflammation Research 52: 64–68.

    Article  CAS  PubMed  Google Scholar 

  45. Kortylewski, M., M. Kujawski, T. Wang, S. Wei, S. Zhang, S. Pilon-Thomas, G. Niu, et al. 2005. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine 11: 1314–1321.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, D., C. Pan, J. Sheng, H. Liang, Z. Bian, Y. Liu, et al. 2018. Human cytomegalovirus reprogrammes haematopoietic progenitor cells into immunosuppressive monocytes to achieve latency. Nature Microbiology 3: 503–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun, Z., A. Chen, H. Fang, D. Sun, M. Huang, E. Cheng, et al. 2023. B cell-derived IL-10 promotes the resolution of lipopolysaccharide-induced acute lung injury. Cell Death & Disease 14: 418.

    Article  CAS  Google Scholar 

  48. Pooladanda, V., S. Thatikonda, S. Bale, B. Pattnaik, D.K. Sigalapalli, N.B. Bathini, et al. 2019. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-α mediated NF-κB and HDAC-3 nuclear translocation. Cell Death & Disease 10: 81.

    Article  Google Scholar 

  49. Hillmer, E.J., H. Zhang, H.S. Li, and S.S. Watowich. 2016. STAT3 signaling in immunity. Cytokine & Growth Factor Reviews 31: 1–15.

    Article  Google Scholar 

  50. Schust, J., B. Sperl, A. Hollis, T.U. Mayer, and T. Berg. 2006. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chemistry & Biology 13: 1235–1242.

    Article  CAS  Google Scholar 

  51. Zhao, J., H. Yu, Y. Liu, S.A. Gibson, Z. Yan, X. Xu, et al. 2016. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology 311: L868–L880.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xue, C., Q. Yao, X. Gu, Q. Shi, X. Yuan, Q. Chu, et al. 2023. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduction and Targeted Therapy 8: 204.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cockram, P.E., M. Kist, S. Prakash, S.-H. Chen, I.E. Wertz, and D. Vucic. 2021. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death & Differentiation 28: 591–605.

    Article  CAS  Google Scholar 

  54. Carow, B., and M.E. Rottenberg. 2014. SOCS3, a major regulator of infection and inflammation. Frontiers in Immunology 5: 58.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang, H., H. Hu, N. Greeley, J. Jin, A.J. Matthews, E. Ohashi, et al. 2014. STAT3 restrains RANK- and TLR4-mediated signalling by suppressing expression of the E2 ubiquitin-conjugating enzyme Ubc13. Nature Communications 5: 5798.

    Article  CAS  PubMed  Google Scholar 

  56. Zou, S., Q. Tong, B. Liu, W. Huang, Y. Tian, and X. Fu. 2020. Targeting STAT3 in cancer immunotherapy. Molecular Cancer 19: 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nawa, Y., K.I. Kawahara, S. Tancharoen, X. Meng, H. Sameshima, T. Ito, Y. Masuda, et al. 2009. Nucleophosmin may act as an alarmin: implications for severe sepsis. Journal of Leukocyte Biology 86: 645–653.

    Article  CAS  PubMed  Google Scholar 

  58. Nie, X.H., S. Qiu, Y. Xing, J. Xu, B. Lu, S.F. Zhao, et al. 2022. Paeoniflorin regulates NEDD4L/STAT3 pathway to induce Ferroptosis in human glioma cells. Journal of Oncology 2022: 6093216.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ouyang, S., H. Li, L. Lou, Q. Huang, Z. Zhang, J. Mo, et al. 2022. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biology 52: 102317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, Z., J. Tang, J. Song, M. Xie, Y. Liu, Z. Dong, et al. 2022. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radical Biology & Medicine 181: 130–142.

    Article  CAS  Google Scholar 

  61. Zhu, M., L. Peng, S. Huo, D. Peng, J. Gou, W. Shi, et al. 2023. STAT3 signaling promotes cardiac injury by upregulating NCOA4-mediated ferritinophagy and ferroptosis in high-fat-diet fed mice. Free Radical Biology & Medicine 201: 111–125.

    Article  CAS  Google Scholar 

  62. Luo, L., L. Deng, Y. Chen, R. Ding, and X. Li. 2023. Identification of Lipocalin 2 as a ferroptosis-related key gene associated with hypoxic-ischemic brain damage via STAT3/NF-κB signaling pathway. Antioxidants 12: 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Public Service Platform of South China Sea for R&D Marine Biomedicine Resources for support.

Funding

This research was funded by the Science and Technology Special Project of Zhanjiang (2022A01034) and the Science and Technology Program of Guangdong Province (2023A1515010850).

Author information

Authors and Affiliations

Authors

Contributions

LXL conceived and designed the study. SSL and JYY analyzed data; WJW conducts experiments; SSL, WJW, LXL, and JYY wrote the manuscript; and LXL reviewed the paper and provided comments. All authors contributed to this manuscript and approved the submitted version.

Corresponding author

Correspondence to Lianxiang Luo.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2001 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Yan, J., Wang, W. et al. STAT3-Mediated Ferroptosis is Involved in Sepsis-Associated Acute Respiratory Distress Syndrome. Inflammation (2024). https://doi.org/10.1007/s10753-024-01970-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-01970-2

KEY WORDS

Navigation