Skip to main content

Advertisement

Log in

NMI Functions as Immuno-regulatory Molecule in Sepsis by Regulating Multiple Signaling Pathways

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Sepsis-induced tissue and organ damage is caused by an overactive inflammatory response, immune dysfunction, and coagulation dysfunction. Danger-associated molecular pattern (DAMP) molecules play a critical role in the excessive inflammation observed in sepsis. In our previous research, we identified NMI as a new type of DAMP molecule that promotes inflammation in sepsis by binding to toll-like receptor 4 (TLR4) on macrophage surfaces, activating the NF-κB pathway, and releasing pro-inflammatory cytokines. However, it is still unknown whether NMI plays a significant role in other pathways. Our analysis of bulk and single-cell transcriptome data from the GEO database revealed a significant increase in NMI expression in neutrophils and monocytes in sepsis patients. It is likely that NMI functions through multiple receptors in sepsis, including IFNAR1, IFNAR2, TNFR1, TLR3, TLR1, IL9R, IL10RB, and TLR4. Furthermore, the correlation between NMI expression and the activation of NF-κB, MAPK, and JAK pathways, as well as the up-regulation of their downstream pro-inflammatory factors, demonstrates that NMI may exacerbate the inflammatory response through these signaling pathways. Finally, we demonstrated that STAT1 phosphorylation was enhanced in RAW cells upon stimulation with NMI, supporting the activation of JAK signaling pathway by NMI. Collectively, these findings shed new light on the functional mechanism of NMI in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Materials

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author. Raw and processed next-generation sequencing datasets are available for download in the NCBI Gene Expression Comprehensive Database (GEO) at numbers: GSE137340, GSE95233 and GSE57065 (bulk RNA-seq); GSE167363 (scRNA-seq).

Abbreviations

CLRs:

C-type lectin receptors

DAMP:

Danger-associated molecular pattern

DEGs:

Differentially expressed genes

eCIRP:

Extracellular cold-inducible RNA-binding protein

GEO:

Gene Expression Omnibus

GSEA:

Gene set enrichment analysis

GSVA:

Gene set variation analysis

HC:

Healthy controls

HSPs:

Heat shock proteins

HMGB1:

High-mobility group box protein 1

IL-33:

Interleukin-33

NCBI:

National Center for Biotechnology Information

NLRs:

NOD-like receptors

NMI:

N-myc and STAT interactor

PAMPs:

Pathogen-associated molecular patterns

PBMC:

Peripheral blood mononuclear cells

PRRs:

Pattern recognizing receptors

RAGE:

Receptor for advanced glycation end products

RLRs:

RIG-like receptors

scRNA-seq:

Single-cell RNA sequencing

SIRS:

Systemic inflammatory response syndrome

SVA:

Surrogate Variable Analysis

TLR4:

Toll-like receptor 4

TLRs:

Toll-like receptors

TREM-1:

Triggering receptor expressed on myeloid cells-1

References

  1. Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 395 (10219): 200–211.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stanski, N.L., and H.R. Wong. 2020. Prognostic and predictive enrichment in sepsis. Nature Reviews. Nephrology 16 (1): 20–31.

    Article  PubMed  Google Scholar 

  3. Shahreyar, M., R. Fahhoum, O. Akinseye, S. Bhandari, G. Dang, and R.N. Khouzam. 2018. Severe sepsis and cardiac arrhythmias. Ann Transl Med. 6 (1): 6.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ackerman, M.H., T. Ahrens, J. Kelly, and A. Pontillo. 2021. Sepsis. Critical Care Nursing Clinics of North America 33 (4): 407–418.

    Article  PubMed  Google Scholar 

  5. Matzinger, P. 2002. The danger model: A renewed sense of self. Science 296 (5566): 301–305.

    Article  CAS  PubMed  Google Scholar 

  6. Rubartelli, A., and M.T. Lotze. 2007. Inside, outside, upside down: Damage-associated molecular-pattern molecules (DAMPs) and redox. Trends in Immunology 28 (10): 429–436.

    Article  CAS  PubMed  Google Scholar 

  7. Denning, N.L., M. Aziz, S.D. Gurien, and P. Wang. 2019. DAMPs and NETs in Sepsis. Frontiers in Immunology 10: 2536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeuchi, O., and S. Akira. 2010. Pattern recognition receptors and inflammation. Cell 140 (6): 805–820.

    Article  CAS  PubMed  Google Scholar 

  9. Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, et al. 2016. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315 (8): 801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salomao, R., B.L. Ferreira, M.C. Salomao, S.S. Santos, L.C.P. Azevedo, and M.K.C. Brunialti. 2019. Sepsis: Evolving concepts and challenges. Brazilian Journal of Medical and Biological Research 52 (4): e8595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aziz, M., A. Jacob, W.L. Yang, A. Matsuda, and P. Wang. 2013. Current trends in inflammatory and immunomodulatory mediators in sepsis. Journal of Leukocyte Biology 93 (3): 329–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sunden-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K.J. Tracey, et al. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Critical Care Medicine 33 (3): 564–573.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, Q., M. Raoof, Y. Chen, Y. Sumi, T. Sursal, W. Junger, et al. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464 (7285): 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiang, X., W.L. Yang, R. Wu, M. Zhou, A. Jacob, W. Dong, et al. 2013. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nature Medicine 19 (11): 1489–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ekaney, M.L., G.P. Otto, M. Sossdorf, C. Sponholz, M. Boehringer, W. Loesche, et al. 2014. Impact of plasma histones in human sepsis and their contribution to cellular injury and inflammation. Critical Care 18 (5).

  16. Denstaedt, S.J., J.L. Spencer-Segal, M.W. Newstead, K. Laborc, A.P. Zhao, A. Hjelmaas, et al. 2018. S100A8/A9 drives neuroinflammatory priming and protects against anxiety-like behavior after sepsis. The Journal of Immunology 200 (9): 3188–3200.

    Article  CAS  PubMed  Google Scholar 

  17. Vulczak, A., C.H.R. Catalao, L.A.P. Freitas, M.J.A. Rocha, 2019. HSP-target of therapeutic agents in sepsis treatment. International Journal of Molecular Science 20 (17).

  18. Nascimento, D.C., P.H. Melo, A.R. Pineros, R.G. Ferreira, D.F. Colon, P.B. Donate, et al. 2017. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. Nature Communications 8: 14919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mouncey, P.R., T.M. Osborn, G.S. Power, D.A. Harrison, M.Z. Sadique, R.D. Grieve, et al. 2015. Trial of early, goal-directed resuscitation for septic shock. New England Journal of Medicine 372 (14): 1301–1311.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou, M., M. Aziz, and P. Wang. 2021. Damage-associated molecular patterns as double-edged swords in sepsis. Antioxidants & Redox Signaling 35 (15): 1308–1323.

    Article  CAS  Google Scholar 

  21. Denning, N.L., M. Aziz, A. Murao, S.D. Gurien, M. Ochani, J.M. Prince, et al. 2020. Extracellular CIRP as an endogenous TREM-1 ligand to fuel inflammation in sepsis. JCI Insight 5 (5).

  22. Xiahou, Z., X. Wang, J. Shen, X. Zhu, F. Xu, R. Hu, et al. 2017. NMI and IFP35 serve as proinflammatory DAMPs during cellular infection and injury. Nature Communications 8 (1): 950.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jing, X., Y. Yao, D. Wu, H. Hong, X. Feng, N. Xu, et al. 2021. IFP35 family proteins promote neuroinflammation and multiple sclerosis. Proceedings National Academy of Sciences USA 118 (32).

  24. Bosmann, M., and P.A. Ward. 2013. The inflammatory response in sepsis. Trends in Immunology 34 (3): 129–136.

    Article  CAS  PubMed  Google Scholar 

  25. Schaefer, L. 2014. Complexity of danger: The diverse nature of damage-associated molecular patterns. Journal of Biological Chemistry 289 (51): 35237–35245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song, B., X. Luo, X. Luo, Y. Liu, Z. Niu, X. Zeng, 2022. Learning spatial structures of proteins improves protein-protein interaction prediction. Brief Bioinformatics 23 (2).

  27. Sledzieski, S., R. Singh, L. Cowen, B. Berger. 2021. D-SCRIPT translates genome to phenome with sequence-based, structure-aware, genome-scale predictions of protein-protein interactions. Cell Systems 12 (10):969–82 e6.

  28. Zhang, Q.C., D. Petrey, L. Deng, L. Qiang, Y. Shi, C.A. Thu, et al. 2012. Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature 490 (7421): 556–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28 (1): 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jin, S., C.F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C.H. Kuan, et al. 2021. Inference and analysis of cell-cell communication using Cell Chat. Nature Communications 12 (1): 1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janeway, C.A., Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symposia on Quantitative Biology 54 (Pt 1): 1–13.

    Article  CAS  PubMed  Google Scholar 

  32. Ye, W., X. Liu, Y. Bai, N. Tang, G. Wu, X. Wang, et al. 2021. Sepsis activates the TLR4/MyD88 pathway in Schwann cells to promote infiltration of macrophages, thereby impeding neuromuscular function. Shock 55 (1): 90–99.

    Article  CAS  PubMed  Google Scholar 

  33. Sharma, A., K. Kontodimas, and M. Bosmann. 2021. The MAVS Immune recognition pathway in viral infection and sepsis. Antioxidants & Redox Signaling 35 (16): 1376–1392.

    Article  CAS  Google Scholar 

  34. Kolaczkowska, E., and P. Kubes. 2013. Neutrophil recruitment and function in health and inflammation. Nature Reviews Immunology 13 (3): 159–175.

    Article  CAS  PubMed  Google Scholar 

  35. Vogel, S., R. Bodenstein, Q.W. Chen, S. Feil, R. Feil, J. Rheinlaender, et al. 2015. Platelet-derived HMGB1 is a critical mediator of thrombosis. The Journal of Clinical Investigation 125 (12): 4638–4654.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reyes, M., M.R. Filbin, R.P. Bhattacharyya, K. Billman, T. Eisenhaure, D.T. Hung, et al. 2020. An immune-cell signature of bacterial sepsis. Nature Medicine 26 (3): 333–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clere-Jehl, R., A. Mariotte, F. Meziani, S. Bahram, P. Georgel, and J. Helms. 2020. JAK-STAT targeting offers novel therapeutic opportunities in sepsis. Trends in Molecular Medicine 26 (11): 987–1002.

    Article  CAS  PubMed  Google Scholar 

  38. Tabone, O., M. Mommert, C. Jourdan, E. Cerrato, M. Legrand, A. Lepape, et al. 2018. Endogenous retroviruses transcriptional modulation after severe infection, trauma and burn. Frontiers in Immunology 9: 3091.

    Article  CAS  PubMed  Google Scholar 

  39. Ouyang, W., and A. O’Garra. 2019. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 50 (4): 871–891.

    Article  CAS  PubMed  Google Scholar 

  40. Shen, W., Z. Song, X. Zhong, M. Huang, D. Shen, P. Gao, et al. 2022. Sangerbox: A comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta 1 (3):e36.

  41. Hänzelmann, S., R. Castelo, and J. Guinney. 2013. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Satija, R., J.A. Farrell, D. Gennert, A.F. Schier, and A. Regev. 2015. Spatial reconstruction of single-cell gene expression data. Nature Biotechnology. 33 (5): 495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Korsunsky, I., N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, et al. 2019. Fast, sensitive and accurate integration of single-cell data with Harmony. Nature Methods 16 (12): 1289–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Becht, E., L. McInnes, J. Healy, C.A. Dutertre, I.W.H. Kwok, L.G. Ng, et al. 2018. Dimensionality reduction for visualizing single-cell data using UMAP. National Biotechnology.

  45. Clarke, Z.A., T.S. Andrews, J. Atif, D. Pouyabahar, B.T. Innes, S.A. MacParland, et al. 2021. Tutorial: Guidelines for annotating single-cell transcriptomic maps using automated and manual methods. Nature Protocols 16 (6): 2749–2764.

    Article  CAS  PubMed  Google Scholar 

  46. Aran, D., A.P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, et al. 2019. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nature Immunology 20 (2): 163–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, X., Z. Zhou, L. Fei, H. Sun, R. Wang, Y. Chen, et al. 2020. Construction of a human cell landscape at single-cell level. Nature 581 (7808): 303–309.

    Article  CAS  PubMed  Google Scholar 

  48. Singh, R., K. Devkota, S. Sledzieski, B. Berger, and L. Cowen. 2022. Topsy-Turvy: Integrating a global view into sequence-based PPI prediction. Bioinformatics (Oxford, England). 38 (Suppl 1): i264–i272.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Huanhuan Liang (Sun Yat-sen University) for valuable discussion and critical comments on the manuscript. We also thank all the contributors of the public databases used in this study for providing all the data for analysis.

Funding

The work was supported by the grants from Shenzhen Science and technology planning project (project no. JCYJ20200109142412265, ZDSYS20220606100803007 to Y.L., project no. RCBS20200714114922284 to Z.W.; project no. 202206193000001, 20220817122906001 to J.Q.). The funding bodies were not involved in the design of the study, collection, analysis, interpretation of data, or writing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and Z.Y. collected the data and performed all the analysis. J.Z., Z.Y., and J.S. prepared the images. J.Z., D.X., J.Q., Z.W., and Y.L. wrote the manuscript and organized the study. All authors contributed to the manuscript and approved the version as submitted.

Corresponding authors

Correspondence to Jing Qin or Zhuangfeng Weng.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J., Yang, Z., Xu, D. et al. NMI Functions as Immuno-regulatory Molecule in Sepsis by Regulating Multiple Signaling Pathways. Inflammation 47, 60–73 (2024). https://doi.org/10.1007/s10753-023-01893-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01893-4

KEY WORDS

Navigation